Evaluate
\frac{3\sqrt{2}}{2}\approx 2.121320344
Share
Copied to clipboard
\frac{\frac{-\sqrt{2}\sqrt{3}}{2\times 2}+\frac{\sqrt{2}}{2}\left(-\sqrt{3}\right)}{-\frac{\sqrt{3}}{2}}
Multiply -\frac{\sqrt{2}}{2} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-\sqrt{2}\sqrt{3}}{2\times 2}+\frac{-\sqrt{2}\sqrt{3}}{2}}{-\frac{\sqrt{3}}{2}}
Express \frac{\sqrt{2}}{2}\left(-\sqrt{3}\right) as a single fraction.
\frac{\frac{-\sqrt{2}\sqrt{3}}{2\times 2}+\frac{2\left(-1\right)\sqrt{2}\sqrt{3}}{2\times 2}}{-\frac{\sqrt{3}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 2 and 2 is 2\times 2. Multiply \frac{-\sqrt{2}\sqrt{3}}{2} times \frac{2}{2}.
\frac{\frac{-\sqrt{2}\sqrt{3}+2\left(-1\right)\sqrt{2}\sqrt{3}}{2\times 2}}{-\frac{\sqrt{3}}{2}}
Since \frac{-\sqrt{2}\sqrt{3}}{2\times 2} and \frac{2\left(-1\right)\sqrt{2}\sqrt{3}}{2\times 2} have the same denominator, add them by adding their numerators.
\frac{\frac{-\sqrt{6}-2\sqrt{6}}{2\times 2}}{-\frac{\sqrt{3}}{2}}
Do the multiplications in -\sqrt{2}\sqrt{3}+2\left(-1\right)\sqrt{2}\sqrt{3}.
\frac{\frac{-3\sqrt{6}}{2\times 2}}{-\frac{\sqrt{3}}{2}}
Do the calculations in -\sqrt{6}-2\sqrt{6}.
\frac{\frac{-3\sqrt{6}}{4}}{-\frac{\sqrt{3}}{2}}
Multiply 2 and 2 to get 4.
\frac{-3\sqrt{6}}{4\left(-1\right)\times \frac{\sqrt{3}}{2}}
Express \frac{\frac{-3\sqrt{6}}{4}}{-\frac{\sqrt{3}}{2}} as a single fraction.
\frac{-3\sqrt{6}}{-4\times \frac{\sqrt{3}}{2}}
Multiply 4 and -1 to get -4.
\frac{-3\sqrt{6}}{-2\sqrt{3}}
Cancel out 2, the greatest common factor in 4 and 2.
\frac{-3\sqrt{6}\sqrt{3}}{-2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{-3\sqrt{6}}{-2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-3\sqrt{6}\sqrt{3}}{-2\times 3}
The square of \sqrt{3} is 3.
\frac{-3\sqrt{3}\sqrt{2}\sqrt{3}}{-2\times 3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{-3\times 3\sqrt{2}}{-2\times 3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-3\times 3\sqrt{2}}{-6}
Multiply -2 and 3 to get -6.
\frac{-9\sqrt{2}}{-6}
Multiply -3 and 3 to get -9.
\frac{3}{2}\sqrt{2}
Divide -9\sqrt{2} by -6 to get \frac{3}{2}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}