Solve for z
z=8
z=-8
Share
Copied to clipboard
3z^{2}\times 3=16\times 36
Multiply both sides of the equation by 48, the least common multiple of 16,3.
9z^{2}=16\times 36
Multiply 3 and 3 to get 9.
9z^{2}=576
Multiply 16 and 36 to get 576.
9z^{2}-576=0
Subtract 576 from both sides.
z^{2}-64=0
Divide both sides by 9.
\left(z-8\right)\left(z+8\right)=0
Consider z^{2}-64. Rewrite z^{2}-64 as z^{2}-8^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
z=8 z=-8
To find equation solutions, solve z-8=0 and z+8=0.
3z^{2}\times 3=16\times 36
Multiply both sides of the equation by 48, the least common multiple of 16,3.
9z^{2}=16\times 36
Multiply 3 and 3 to get 9.
9z^{2}=576
Multiply 16 and 36 to get 576.
z^{2}=\frac{576}{9}
Divide both sides by 9.
z^{2}=64
Divide 576 by 9 to get 64.
z=8 z=-8
Take the square root of both sides of the equation.
3z^{2}\times 3=16\times 36
Multiply both sides of the equation by 48, the least common multiple of 16,3.
9z^{2}=16\times 36
Multiply 3 and 3 to get 9.
9z^{2}=576
Multiply 16 and 36 to get 576.
9z^{2}-576=0
Subtract 576 from both sides.
z=\frac{0±\sqrt{0^{2}-4\times 9\left(-576\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -576 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\times 9\left(-576\right)}}{2\times 9}
Square 0.
z=\frac{0±\sqrt{-36\left(-576\right)}}{2\times 9}
Multiply -4 times 9.
z=\frac{0±\sqrt{20736}}{2\times 9}
Multiply -36 times -576.
z=\frac{0±144}{2\times 9}
Take the square root of 20736.
z=\frac{0±144}{18}
Multiply 2 times 9.
z=8
Now solve the equation z=\frac{0±144}{18} when ± is plus. Divide 144 by 18.
z=-8
Now solve the equation z=\frac{0±144}{18} when ± is minus. Divide -144 by 18.
z=8 z=-8
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}