Evaluate
z^{6}
Differentiate w.r.t. z
6z^{5}
Share
Copied to clipboard
\frac{z^{-6}\left(z^{5}\right)^{4}}{\left(z^{4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{z^{-6}z^{20}}{\left(z^{4}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 4 to get 20.
\frac{z^{14}}{\left(z^{4}\right)^{2}}
To multiply powers of the same base, add their exponents. Add -6 and 20 to get 14.
\frac{z^{14}}{z^{8}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
z^{6}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 8 from 14 to get 6.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{z^{-6}\left(z^{5}\right)^{4}}{\left(z^{4}\right)^{2}})
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{z^{-6}z^{20}}{\left(z^{4}\right)^{2}})
To raise a power to another power, multiply the exponents. Multiply 5 and 4 to get 20.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{z^{14}}{\left(z^{4}\right)^{2}})
To multiply powers of the same base, add their exponents. Add -6 and 20 to get 14.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{z^{14}}{z^{8}})
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{\mathrm{d}}{\mathrm{d}z}(z^{6})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 8 from 14 to get 6.
6z^{6-1}
The derivative of ax^{n} is nax^{n-1}.
6z^{5}
Subtract 1 from 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}