Evaluate
\frac{y+3}{y+1}
Expand
\frac{y+3}{y+1}
Graph
Share
Copied to clipboard
\frac{\left(y+3\right)^{3}\left(y^{2}+2y+1\right)}{\left(y+1\right)^{3}\left(y^{2}+6y+9\right)}
Multiply \frac{\left(y+3\right)^{3}}{\left(y+1\right)^{3}} times \frac{y^{2}+2y+1}{y^{2}+6y+9} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(y+1\right)^{2}\left(y+3\right)^{3}}{\left(y+3\right)^{2}\left(y+1\right)^{3}}
Factor the expressions that are not already factored.
\frac{y+3}{y+1}
Cancel out \left(y+1\right)^{2}\left(y+3\right)^{2} in both numerator and denominator.
\frac{\left(y+3\right)^{3}\left(y^{2}+2y+1\right)}{\left(y+1\right)^{3}\left(y^{2}+6y+9\right)}
Multiply \frac{\left(y+3\right)^{3}}{\left(y+1\right)^{3}} times \frac{y^{2}+2y+1}{y^{2}+6y+9} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(y+1\right)^{2}\left(y+3\right)^{3}}{\left(y+3\right)^{2}\left(y+1\right)^{3}}
Factor the expressions that are not already factored.
\frac{y+3}{y+1}
Cancel out \left(y+1\right)^{2}\left(y+3\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}