Solve for q (complex solution)
\left\{\begin{matrix}q=-\frac{4\left(x-p\right)^{2}}{y^{2}-864}\text{, }&x\neq p\text{ and }y\neq -12\sqrt{6}\text{ and }y\neq 12\sqrt{6}\\q\neq 0\text{, }&\left(y=-12\sqrt{6}\text{ or }y=12\sqrt{6}\right)\text{ and }x=p\end{matrix}\right.
Solve for q
\left\{\begin{matrix}q=-\frac{4\left(x-p\right)^{2}}{y^{2}-864}\text{, }&x\neq p\text{ and }|y|\neq 12\sqrt{6}\\q\neq 0\text{, }&x=p\text{ and }|y|=12\sqrt{6}\end{matrix}\right.
Solve for p (complex solution)
p=-\frac{i\sqrt{q}\sqrt{y^{2}-864}}{2}+x
p=\frac{i\sqrt{q}\sqrt{y^{2}-864}}{2}+x\text{, }q\neq 0
Solve for p
\left\{\begin{matrix}p=\frac{\sqrt{864q-qy^{2}}}{2}+x\text{; }p=-\frac{\sqrt{864q-qy^{2}}}{2}+x\text{, }&|y|\geq 12\sqrt{6}\text{ and }q<0\\p=\frac{\sqrt{864q-qy^{2}}}{2}+x\text{; }p=-\frac{\sqrt{864q-qy^{2}}}{2}+x\text{, }&|y|=12\sqrt{6}\text{ and }q\neq 0\\p=\frac{\sqrt{864q-qy^{2}}}{2}+x\text{; }p=-\frac{\sqrt{864q-qy^{2}}}{2}+x\text{, }&q>0\text{ and }|y|\leq 12\sqrt{6}\end{matrix}\right.
Graph
Quiz
Algebra
5 problems similar to:
\frac { ( x - p ) ^ { 2 } } { q } + \frac { y ^ { 2 } } { 4 } = 216
Share
Copied to clipboard
4\left(x-p\right)^{2}+qy^{2}=864q
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4q, the least common multiple of q,4.
4\left(x^{2}-2xp+p^{2}\right)+qy^{2}=864q
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-p\right)^{2}.
4x^{2}-8xp+4p^{2}+qy^{2}=864q
Use the distributive property to multiply 4 by x^{2}-2xp+p^{2}.
4x^{2}-8xp+4p^{2}+qy^{2}-864q=0
Subtract 864q from both sides.
-8xp+4p^{2}+qy^{2}-864q=-4x^{2}
Subtract 4x^{2} from both sides. Anything subtracted from zero gives its negation.
4p^{2}+qy^{2}-864q=-4x^{2}+8xp
Add 8xp to both sides.
qy^{2}-864q=-4x^{2}+8xp-4p^{2}
Subtract 4p^{2} from both sides.
\left(y^{2}-864\right)q=-4x^{2}+8xp-4p^{2}
Combine all terms containing q.
\left(y^{2}-864\right)q=-4x^{2}+8px-4p^{2}
The equation is in standard form.
\frac{\left(y^{2}-864\right)q}{y^{2}-864}=-\frac{4\left(x-p\right)^{2}}{y^{2}-864}
Divide both sides by y^{2}-864.
q=-\frac{4\left(x-p\right)^{2}}{y^{2}-864}
Dividing by y^{2}-864 undoes the multiplication by y^{2}-864.
q=-\frac{4\left(x-p\right)^{2}}{y^{2}-864}\text{, }q\neq 0
Variable q cannot be equal to 0.
4\left(x-p\right)^{2}+qy^{2}=864q
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4q, the least common multiple of q,4.
4\left(x^{2}-2xp+p^{2}\right)+qy^{2}=864q
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-p\right)^{2}.
4x^{2}-8xp+4p^{2}+qy^{2}=864q
Use the distributive property to multiply 4 by x^{2}-2xp+p^{2}.
4x^{2}-8xp+4p^{2}+qy^{2}-864q=0
Subtract 864q from both sides.
-8xp+4p^{2}+qy^{2}-864q=-4x^{2}
Subtract 4x^{2} from both sides. Anything subtracted from zero gives its negation.
4p^{2}+qy^{2}-864q=-4x^{2}+8xp
Add 8xp to both sides.
qy^{2}-864q=-4x^{2}+8xp-4p^{2}
Subtract 4p^{2} from both sides.
\left(y^{2}-864\right)q=-4x^{2}+8xp-4p^{2}
Combine all terms containing q.
\left(y^{2}-864\right)q=-4x^{2}+8px-4p^{2}
The equation is in standard form.
\frac{\left(y^{2}-864\right)q}{y^{2}-864}=-\frac{4\left(x-p\right)^{2}}{y^{2}-864}
Divide both sides by -864+y^{2}.
q=-\frac{4\left(x-p\right)^{2}}{y^{2}-864}
Dividing by -864+y^{2} undoes the multiplication by -864+y^{2}.
q=-\frac{4\left(x-p\right)^{2}}{y^{2}-864}\text{, }q\neq 0
Variable q cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}