Evaluate
\frac{x^{3}-x^{2}+82x+2}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Expand
\frac{x^{3}-x^{2}+82x+2}{\left(x^{2}+26\right)\left(x^{2}+14x+33\right)}
Graph
Share
Copied to clipboard
\frac{x-5}{x^{2}+14x+33}+\frac{4}{x^{2}+26}
Add -14 and 40 to get 26.
\frac{x-5}{\left(x+3\right)\left(x+11\right)}+\frac{4}{x^{2}+26}
Factor x^{2}+14x+33.
\frac{\left(x-5\right)\left(x^{2}+26\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}+\frac{4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)\left(x+11\right) and x^{2}+26 is \left(x+3\right)\left(x+11\right)\left(x^{2}+26\right). Multiply \frac{x-5}{\left(x+3\right)\left(x+11\right)} times \frac{x^{2}+26}{x^{2}+26}. Multiply \frac{4}{x^{2}+26} times \frac{\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)}.
\frac{\left(x-5\right)\left(x^{2}+26\right)+4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Since \frac{\left(x-5\right)\left(x^{2}+26\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)} and \frac{4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+26x-5x^{2}-130+4x^{2}+44x+12x+132}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Do the multiplications in \left(x-5\right)\left(x^{2}+26\right)+4\left(x+3\right)\left(x+11\right).
\frac{x^{3}+82x-x^{2}+2}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Combine like terms in x^{3}+26x-5x^{2}-130+4x^{2}+44x+12x+132.
\frac{x^{3}+82x-x^{2}+2}{x^{4}+14x^{3}+59x^{2}+364x+858}
Expand \left(x+3\right)\left(x+11\right)\left(x^{2}+26\right).
\frac{x-5}{x^{2}+14x+33}+\frac{4}{x^{2}+26}
Add -14 and 40 to get 26.
\frac{x-5}{\left(x+3\right)\left(x+11\right)}+\frac{4}{x^{2}+26}
Factor x^{2}+14x+33.
\frac{\left(x-5\right)\left(x^{2}+26\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}+\frac{4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)\left(x+11\right) and x^{2}+26 is \left(x+3\right)\left(x+11\right)\left(x^{2}+26\right). Multiply \frac{x-5}{\left(x+3\right)\left(x+11\right)} times \frac{x^{2}+26}{x^{2}+26}. Multiply \frac{4}{x^{2}+26} times \frac{\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)}.
\frac{\left(x-5\right)\left(x^{2}+26\right)+4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Since \frac{\left(x-5\right)\left(x^{2}+26\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)} and \frac{4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+26x-5x^{2}-130+4x^{2}+44x+12x+132}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Do the multiplications in \left(x-5\right)\left(x^{2}+26\right)+4\left(x+3\right)\left(x+11\right).
\frac{x^{3}+82x-x^{2}+2}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Combine like terms in x^{3}+26x-5x^{2}-130+4x^{2}+44x+12x+132.
\frac{x^{3}+82x-x^{2}+2}{x^{4}+14x^{3}+59x^{2}+364x+858}
Expand \left(x+3\right)\left(x+11\right)\left(x^{2}+26\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}