Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-5}{x^{2}+14x+33}+\frac{4}{x^{2}+26}
Add -14 and 40 to get 26.
\frac{x-5}{\left(x+3\right)\left(x+11\right)}+\frac{4}{x^{2}+26}
Factor x^{2}+14x+33.
\frac{\left(x-5\right)\left(x^{2}+26\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}+\frac{4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)\left(x+11\right) and x^{2}+26 is \left(x+3\right)\left(x+11\right)\left(x^{2}+26\right). Multiply \frac{x-5}{\left(x+3\right)\left(x+11\right)} times \frac{x^{2}+26}{x^{2}+26}. Multiply \frac{4}{x^{2}+26} times \frac{\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)}.
\frac{\left(x-5\right)\left(x^{2}+26\right)+4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Since \frac{\left(x-5\right)\left(x^{2}+26\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)} and \frac{4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+26x-5x^{2}-130+4x^{2}+44x+12x+132}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Do the multiplications in \left(x-5\right)\left(x^{2}+26\right)+4\left(x+3\right)\left(x+11\right).
\frac{x^{3}+82x-x^{2}+2}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Combine like terms in x^{3}+26x-5x^{2}-130+4x^{2}+44x+12x+132.
\frac{x^{3}+82x-x^{2}+2}{x^{4}+14x^{3}+59x^{2}+364x+858}
Expand \left(x+3\right)\left(x+11\right)\left(x^{2}+26\right).
\frac{x-5}{x^{2}+14x+33}+\frac{4}{x^{2}+26}
Add -14 and 40 to get 26.
\frac{x-5}{\left(x+3\right)\left(x+11\right)}+\frac{4}{x^{2}+26}
Factor x^{2}+14x+33.
\frac{\left(x-5\right)\left(x^{2}+26\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}+\frac{4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)\left(x+11\right) and x^{2}+26 is \left(x+3\right)\left(x+11\right)\left(x^{2}+26\right). Multiply \frac{x-5}{\left(x+3\right)\left(x+11\right)} times \frac{x^{2}+26}{x^{2}+26}. Multiply \frac{4}{x^{2}+26} times \frac{\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)}.
\frac{\left(x-5\right)\left(x^{2}+26\right)+4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Since \frac{\left(x-5\right)\left(x^{2}+26\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)} and \frac{4\left(x+3\right)\left(x+11\right)}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+26x-5x^{2}-130+4x^{2}+44x+12x+132}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Do the multiplications in \left(x-5\right)\left(x^{2}+26\right)+4\left(x+3\right)\left(x+11\right).
\frac{x^{3}+82x-x^{2}+2}{\left(x+3\right)\left(x+11\right)\left(x^{2}+26\right)}
Combine like terms in x^{3}+26x-5x^{2}-130+4x^{2}+44x+12x+132.
\frac{x^{3}+82x-x^{2}+2}{x^{4}+14x^{3}+59x^{2}+364x+858}
Expand \left(x+3\right)\left(x+11\right)\left(x^{2}+26\right).