Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-3}{x^{2}-3x-4}-\frac{x-2}{\left(x-2\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{x-2}{x^{2}-x-2}.
\frac{x-3}{x^{2}-3x-4}-\frac{1}{x+1}
Cancel out x-2 in both numerator and denominator.
\frac{x-3}{\left(x-4\right)\left(x+1\right)}-\frac{1}{x+1}
Factor x^{2}-3x-4.
\frac{x-3}{\left(x-4\right)\left(x+1\right)}-\frac{x-4}{\left(x-4\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+1\right) and x+1 is \left(x-4\right)\left(x+1\right). Multiply \frac{1}{x+1} times \frac{x-4}{x-4}.
\frac{x-3-\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}
Since \frac{x-3}{\left(x-4\right)\left(x+1\right)} and \frac{x-4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3-x+4}{\left(x-4\right)\left(x+1\right)}
Do the multiplications in x-3-\left(x-4\right).
\frac{1}{\left(x-4\right)\left(x+1\right)}
Combine like terms in x-3-x+4.
\frac{1}{x^{2}-3x-4}
Expand \left(x-4\right)\left(x+1\right).
\frac{x-3}{x^{2}-3x-4}-\frac{x-2}{\left(x-2\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{x-2}{x^{2}-x-2}.
\frac{x-3}{x^{2}-3x-4}-\frac{1}{x+1}
Cancel out x-2 in both numerator and denominator.
\frac{x-3}{\left(x-4\right)\left(x+1\right)}-\frac{1}{x+1}
Factor x^{2}-3x-4.
\frac{x-3}{\left(x-4\right)\left(x+1\right)}-\frac{x-4}{\left(x-4\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+1\right) and x+1 is \left(x-4\right)\left(x+1\right). Multiply \frac{1}{x+1} times \frac{x-4}{x-4}.
\frac{x-3-\left(x-4\right)}{\left(x-4\right)\left(x+1\right)}
Since \frac{x-3}{\left(x-4\right)\left(x+1\right)} and \frac{x-4}{\left(x-4\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3-x+4}{\left(x-4\right)\left(x+1\right)}
Do the multiplications in x-3-\left(x-4\right).
\frac{1}{\left(x-4\right)\left(x+1\right)}
Combine like terms in x-3-x+4.
\frac{1}{x^{2}-3x-4}
Expand \left(x-4\right)\left(x+1\right).