Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x-3}{x+3} times \frac{x-3}{x-3}. Multiply \frac{x+3}{x-3} times \frac{x+3}{x+3}.
\frac{\left(x-3\right)\left(x-3\right)-\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-3x-3x+9-x^{2}-3x-3x-9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in \left(x-3\right)\left(x-3\right)-\left(x+3\right)\left(x+3\right).
\frac{-12x}{\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{2}-3x-3x+9-x^{2}-3x-3x-9.
\frac{-12x}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).
\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x-3}{x+3} times \frac{x-3}{x-3}. Multiply \frac{x+3}{x-3} times \frac{x+3}{x+3}.
\frac{\left(x-3\right)\left(x-3\right)-\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-3x-3x+9-x^{2}-3x-3x-9}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in \left(x-3\right)\left(x-3\right)-\left(x+3\right)\left(x+3\right).
\frac{-12x}{\left(x-3\right)\left(x+3\right)}
Combine like terms in x^{2}-3x-3x+9-x^{2}-3x-3x-9.
\frac{-12x}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).