Solve for y
y=-\frac{4\left(x-28\right)\left(x+22\right)}{625}
Solve for x (complex solution)
x=-\frac{25\sqrt{4-y}}{2}+3
x=\frac{25\sqrt{4-y}}{2}+3
Solve for x
x=-\frac{25\sqrt{4-y}}{2}+3
x=\frac{25\sqrt{4-y}}{2}+3\text{, }y\leq 4
Graph
Share
Copied to clipboard
\frac{x^{2}-6x+9}{5^{4}}+\frac{y^{1}}{4^{1}}=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
\frac{x^{2}-6x+9}{625}+\frac{y^{1}}{4^{1}}=1
Calculate 5 to the power of 4 and get 625.
\frac{x^{2}-6x+9}{625}+\frac{y}{4^{1}}=1
Calculate y to the power of 1 and get y.
\frac{x^{2}-6x+9}{625}+\frac{y}{4}=1
Calculate 4 to the power of 1 and get 4.
\frac{4\left(x^{2}-6x+9\right)}{2500}+\frac{625y}{2500}=1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 625 and 4 is 2500. Multiply \frac{x^{2}-6x+9}{625} times \frac{4}{4}. Multiply \frac{y}{4} times \frac{625}{625}.
\frac{4\left(x^{2}-6x+9\right)+625y}{2500}=1
Since \frac{4\left(x^{2}-6x+9\right)}{2500} and \frac{625y}{2500} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-24x+36+625y}{2500}=1
Do the multiplications in 4\left(x^{2}-6x+9\right)+625y.
\frac{1}{625}x^{2}-\frac{6}{625}x+\frac{9}{625}+\frac{1}{4}y=1
Divide each term of 4x^{2}-24x+36+625y by 2500 to get \frac{1}{625}x^{2}-\frac{6}{625}x+\frac{9}{625}+\frac{1}{4}y.
-\frac{6}{625}x+\frac{9}{625}+\frac{1}{4}y=1-\frac{1}{625}x^{2}
Subtract \frac{1}{625}x^{2} from both sides.
\frac{9}{625}+\frac{1}{4}y=1-\frac{1}{625}x^{2}+\frac{6}{625}x
Add \frac{6}{625}x to both sides.
\frac{1}{4}y=1-\frac{1}{625}x^{2}+\frac{6}{625}x-\frac{9}{625}
Subtract \frac{9}{625} from both sides.
\frac{1}{4}y=\frac{616}{625}-\frac{1}{625}x^{2}+\frac{6}{625}x
Subtract \frac{9}{625} from 1 to get \frac{616}{625}.
\frac{1}{4}y=\frac{616+6x-x^{2}}{625}
The equation is in standard form.
\frac{\frac{1}{4}y}{\frac{1}{4}}=-\frac{\frac{\left(x-28\right)\left(x+22\right)}{625}}{\frac{1}{4}}
Multiply both sides by 4.
y=-\frac{\frac{\left(x-28\right)\left(x+22\right)}{625}}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
y=-\frac{4\left(x-28\right)\left(x+22\right)}{625}
Divide -\frac{\left(-28+x\right)\left(22+x\right)}{625} by \frac{1}{4} by multiplying -\frac{\left(-28+x\right)\left(22+x\right)}{625} by the reciprocal of \frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}