Skip to main content
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-6x+9}{5^{4}}+\frac{y^{1}}{4^{1}}=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
\frac{x^{2}-6x+9}{625}+\frac{y^{1}}{4^{1}}=1
Calculate 5 to the power of 4 and get 625.
\frac{x^{2}-6x+9}{625}+\frac{y}{4^{1}}=1
Calculate y to the power of 1 and get y.
\frac{x^{2}-6x+9}{625}+\frac{y}{4}=1
Calculate 4 to the power of 1 and get 4.
\frac{4\left(x^{2}-6x+9\right)}{2500}+\frac{625y}{2500}=1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 625 and 4 is 2500. Multiply \frac{x^{2}-6x+9}{625} times \frac{4}{4}. Multiply \frac{y}{4} times \frac{625}{625}.
\frac{4\left(x^{2}-6x+9\right)+625y}{2500}=1
Since \frac{4\left(x^{2}-6x+9\right)}{2500} and \frac{625y}{2500} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-24x+36+625y}{2500}=1
Do the multiplications in 4\left(x^{2}-6x+9\right)+625y.
\frac{1}{625}x^{2}-\frac{6}{625}x+\frac{9}{625}+\frac{1}{4}y=1
Divide each term of 4x^{2}-24x+36+625y by 2500 to get \frac{1}{625}x^{2}-\frac{6}{625}x+\frac{9}{625}+\frac{1}{4}y.
-\frac{6}{625}x+\frac{9}{625}+\frac{1}{4}y=1-\frac{1}{625}x^{2}
Subtract \frac{1}{625}x^{2} from both sides.
\frac{9}{625}+\frac{1}{4}y=1-\frac{1}{625}x^{2}+\frac{6}{625}x
Add \frac{6}{625}x to both sides.
\frac{1}{4}y=1-\frac{1}{625}x^{2}+\frac{6}{625}x-\frac{9}{625}
Subtract \frac{9}{625} from both sides.
\frac{1}{4}y=\frac{616}{625}-\frac{1}{625}x^{2}+\frac{6}{625}x
Subtract \frac{9}{625} from 1 to get \frac{616}{625}.
\frac{1}{4}y=\frac{616+6x-x^{2}}{625}
The equation is in standard form.
\frac{\frac{1}{4}y}{\frac{1}{4}}=-\frac{\frac{\left(x-28\right)\left(x+22\right)}{625}}{\frac{1}{4}}
Multiply both sides by 4.
y=-\frac{\frac{\left(x-28\right)\left(x+22\right)}{625}}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
y=-\frac{4\left(x-28\right)\left(x+22\right)}{625}
Divide -\frac{\left(-28+x\right)\left(22+x\right)}{625} by \frac{1}{4} by multiplying -\frac{\left(-28+x\right)\left(22+x\right)}{625} by the reciprocal of \frac{1}{4}.