Solve for x
x=1
x=9
Graph
Share
Copied to clipboard
\frac{x^{2}-6x+9}{4}=x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
\frac{1}{4}x^{2}-\frac{3}{2}x+\frac{9}{4}=x
Divide each term of x^{2}-6x+9 by 4 to get \frac{1}{4}x^{2}-\frac{3}{2}x+\frac{9}{4}.
\frac{1}{4}x^{2}-\frac{3}{2}x+\frac{9}{4}-x=0
Subtract x from both sides.
\frac{1}{4}x^{2}-\frac{5}{2}x+\frac{9}{4}=0
Combine -\frac{3}{2}x and -x to get -\frac{5}{2}x.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\left(-\frac{5}{2}\right)^{2}-4\times \frac{1}{4}\times \frac{9}{4}}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, -\frac{5}{2} for b, and \frac{9}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-4\times \frac{1}{4}\times \frac{9}{4}}}{2\times \frac{1}{4}}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-\frac{9}{4}}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25-9}{4}}}{2\times \frac{1}{4}}
Multiply -1 times \frac{9}{4}.
x=\frac{-\left(-\frac{5}{2}\right)±\sqrt{4}}{2\times \frac{1}{4}}
Add \frac{25}{4} to -\frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{5}{2}\right)±2}{2\times \frac{1}{4}}
Take the square root of 4.
x=\frac{\frac{5}{2}±2}{2\times \frac{1}{4}}
The opposite of -\frac{5}{2} is \frac{5}{2}.
x=\frac{\frac{5}{2}±2}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
x=\frac{\frac{9}{2}}{\frac{1}{2}}
Now solve the equation x=\frac{\frac{5}{2}±2}{\frac{1}{2}} when ± is plus. Add \frac{5}{2} to 2.
x=9
Divide \frac{9}{2} by \frac{1}{2} by multiplying \frac{9}{2} by the reciprocal of \frac{1}{2}.
x=\frac{\frac{1}{2}}{\frac{1}{2}}
Now solve the equation x=\frac{\frac{5}{2}±2}{\frac{1}{2}} when ± is minus. Subtract 2 from \frac{5}{2}.
x=1
Divide \frac{1}{2} by \frac{1}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{2}.
x=9 x=1
The equation is now solved.
\frac{x^{2}-6x+9}{4}=x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
\frac{1}{4}x^{2}-\frac{3}{2}x+\frac{9}{4}=x
Divide each term of x^{2}-6x+9 by 4 to get \frac{1}{4}x^{2}-\frac{3}{2}x+\frac{9}{4}.
\frac{1}{4}x^{2}-\frac{3}{2}x+\frac{9}{4}-x=0
Subtract x from both sides.
\frac{1}{4}x^{2}-\frac{5}{2}x+\frac{9}{4}=0
Combine -\frac{3}{2}x and -x to get -\frac{5}{2}x.
\frac{1}{4}x^{2}-\frac{5}{2}x=-\frac{9}{4}
Subtract \frac{9}{4} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{4}x^{2}-\frac{5}{2}x}{\frac{1}{4}}=-\frac{\frac{9}{4}}{\frac{1}{4}}
Multiply both sides by 4.
x^{2}+\left(-\frac{\frac{5}{2}}{\frac{1}{4}}\right)x=-\frac{\frac{9}{4}}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
x^{2}-10x=-\frac{\frac{9}{4}}{\frac{1}{4}}
Divide -\frac{5}{2} by \frac{1}{4} by multiplying -\frac{5}{2} by the reciprocal of \frac{1}{4}.
x^{2}-10x=-9
Divide -\frac{9}{4} by \frac{1}{4} by multiplying -\frac{9}{4} by the reciprocal of \frac{1}{4}.
x^{2}-10x+\left(-5\right)^{2}=-9+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-9+25
Square -5.
x^{2}-10x+25=16
Add -9 to 25.
\left(x-5\right)^{2}=16
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-5=4 x-5=-4
Simplify.
x=9 x=1
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}