Solve for x
x=\frac{\sqrt{10}}{5}+4\approx 4.632455532
x=-\frac{\sqrt{10}}{5}+4\approx 3.367544468
Graph
Share
Copied to clipboard
\left(3x-15\right)\left(x-2\right)-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
Variable x cannot be equal to any of the values 3,5 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-5\right)\left(x-3\right), the least common multiple of x-3,x-5,3.
3x^{2}-21x+30-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
Use the distributive property to multiply 3x-15 by x-2 and combine like terms.
3x^{2}-21x+30-\left(3x^{2}-21x+36\right)=10\left(x-5\right)\left(x-3\right)
Use the distributive property to multiply 3x-9 by x-4 and combine like terms.
3x^{2}-21x+30-3x^{2}+21x-36=10\left(x-5\right)\left(x-3\right)
To find the opposite of 3x^{2}-21x+36, find the opposite of each term.
-21x+30+21x-36=10\left(x-5\right)\left(x-3\right)
Combine 3x^{2} and -3x^{2} to get 0.
30-36=10\left(x-5\right)\left(x-3\right)
Combine -21x and 21x to get 0.
-6=10\left(x-5\right)\left(x-3\right)
Subtract 36 from 30 to get -6.
-6=\left(10x-50\right)\left(x-3\right)
Use the distributive property to multiply 10 by x-5.
-6=10x^{2}-80x+150
Use the distributive property to multiply 10x-50 by x-3 and combine like terms.
10x^{2}-80x+150=-6
Swap sides so that all variable terms are on the left hand side.
10x^{2}-80x+150+6=0
Add 6 to both sides.
10x^{2}-80x+156=0
Add 150 and 6 to get 156.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 10\times 156}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -80 for b, and 156 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 10\times 156}}{2\times 10}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-40\times 156}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-80\right)±\sqrt{6400-6240}}{2\times 10}
Multiply -40 times 156.
x=\frac{-\left(-80\right)±\sqrt{160}}{2\times 10}
Add 6400 to -6240.
x=\frac{-\left(-80\right)±4\sqrt{10}}{2\times 10}
Take the square root of 160.
x=\frac{80±4\sqrt{10}}{2\times 10}
The opposite of -80 is 80.
x=\frac{80±4\sqrt{10}}{20}
Multiply 2 times 10.
x=\frac{4\sqrt{10}+80}{20}
Now solve the equation x=\frac{80±4\sqrt{10}}{20} when ± is plus. Add 80 to 4\sqrt{10}.
x=\frac{\sqrt{10}}{5}+4
Divide 80+4\sqrt{10} by 20.
x=\frac{80-4\sqrt{10}}{20}
Now solve the equation x=\frac{80±4\sqrt{10}}{20} when ± is minus. Subtract 4\sqrt{10} from 80.
x=-\frac{\sqrt{10}}{5}+4
Divide 80-4\sqrt{10} by 20.
x=\frac{\sqrt{10}}{5}+4 x=-\frac{\sqrt{10}}{5}+4
The equation is now solved.
\left(3x-15\right)\left(x-2\right)-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
Variable x cannot be equal to any of the values 3,5 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-5\right)\left(x-3\right), the least common multiple of x-3,x-5,3.
3x^{2}-21x+30-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
Use the distributive property to multiply 3x-15 by x-2 and combine like terms.
3x^{2}-21x+30-\left(3x^{2}-21x+36\right)=10\left(x-5\right)\left(x-3\right)
Use the distributive property to multiply 3x-9 by x-4 and combine like terms.
3x^{2}-21x+30-3x^{2}+21x-36=10\left(x-5\right)\left(x-3\right)
To find the opposite of 3x^{2}-21x+36, find the opposite of each term.
-21x+30+21x-36=10\left(x-5\right)\left(x-3\right)
Combine 3x^{2} and -3x^{2} to get 0.
30-36=10\left(x-5\right)\left(x-3\right)
Combine -21x and 21x to get 0.
-6=10\left(x-5\right)\left(x-3\right)
Subtract 36 from 30 to get -6.
-6=\left(10x-50\right)\left(x-3\right)
Use the distributive property to multiply 10 by x-5.
-6=10x^{2}-80x+150
Use the distributive property to multiply 10x-50 by x-3 and combine like terms.
10x^{2}-80x+150=-6
Swap sides so that all variable terms are on the left hand side.
10x^{2}-80x=-6-150
Subtract 150 from both sides.
10x^{2}-80x=-156
Subtract 150 from -6 to get -156.
\frac{10x^{2}-80x}{10}=-\frac{156}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{80}{10}\right)x=-\frac{156}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-8x=-\frac{156}{10}
Divide -80 by 10.
x^{2}-8x=-\frac{78}{5}
Reduce the fraction \frac{-156}{10} to lowest terms by extracting and canceling out 2.
x^{2}-8x+\left(-4\right)^{2}=-\frac{78}{5}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-\frac{78}{5}+16
Square -4.
x^{2}-8x+16=\frac{2}{5}
Add -\frac{78}{5} to 16.
\left(x-4\right)^{2}=\frac{2}{5}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{2}{5}}
Take the square root of both sides of the equation.
x-4=\frac{\sqrt{10}}{5} x-4=-\frac{\sqrt{10}}{5}
Simplify.
x=\frac{\sqrt{10}}{5}+4 x=-\frac{\sqrt{10}}{5}+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}