Solve for x
x=-2
x=1
Graph
Share
Copied to clipboard
\left(x-1\right)\left(x+2\right)-2\left(x+1\right)\left(x-2\right)-12=4\left(x-3\right)
Multiply both sides of the equation by 12, the least common multiple of 12,6,3.
x^{2}+x-2-2\left(x+1\right)\left(x-2\right)-12=4\left(x-3\right)
Use the distributive property to multiply x-1 by x+2 and combine like terms.
x^{2}+x-2+\left(-2x-2\right)\left(x-2\right)-12=4\left(x-3\right)
Use the distributive property to multiply -2 by x+1.
x^{2}+x-2-2x^{2}+2x+4-12=4\left(x-3\right)
Use the distributive property to multiply -2x-2 by x-2 and combine like terms.
-x^{2}+x-2+2x+4-12=4\left(x-3\right)
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+3x-2+4-12=4\left(x-3\right)
Combine x and 2x to get 3x.
-x^{2}+3x+2-12=4\left(x-3\right)
Add -2 and 4 to get 2.
-x^{2}+3x-10=4\left(x-3\right)
Subtract 12 from 2 to get -10.
-x^{2}+3x-10=4x-12
Use the distributive property to multiply 4 by x-3.
-x^{2}+3x-10-4x=-12
Subtract 4x from both sides.
-x^{2}-x-10=-12
Combine 3x and -4x to get -x.
-x^{2}-x-10+12=0
Add 12 to both sides.
-x^{2}-x+2=0
Add -10 and 12 to get 2.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
Multiply 4 times 2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
Add 1 to 8.
x=\frac{-\left(-1\right)±3}{2\left(-1\right)}
Take the square root of 9.
x=\frac{1±3}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±3}{-2}
Multiply 2 times -1.
x=\frac{4}{-2}
Now solve the equation x=\frac{1±3}{-2} when ± is plus. Add 1 to 3.
x=-2
Divide 4 by -2.
x=-\frac{2}{-2}
Now solve the equation x=\frac{1±3}{-2} when ± is minus. Subtract 3 from 1.
x=1
Divide -2 by -2.
x=-2 x=1
The equation is now solved.
\left(x-1\right)\left(x+2\right)-2\left(x+1\right)\left(x-2\right)-12=4\left(x-3\right)
Multiply both sides of the equation by 12, the least common multiple of 12,6,3.
x^{2}+x-2-2\left(x+1\right)\left(x-2\right)-12=4\left(x-3\right)
Use the distributive property to multiply x-1 by x+2 and combine like terms.
x^{2}+x-2+\left(-2x-2\right)\left(x-2\right)-12=4\left(x-3\right)
Use the distributive property to multiply -2 by x+1.
x^{2}+x-2-2x^{2}+2x+4-12=4\left(x-3\right)
Use the distributive property to multiply -2x-2 by x-2 and combine like terms.
-x^{2}+x-2+2x+4-12=4\left(x-3\right)
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+3x-2+4-12=4\left(x-3\right)
Combine x and 2x to get 3x.
-x^{2}+3x+2-12=4\left(x-3\right)
Add -2 and 4 to get 2.
-x^{2}+3x-10=4\left(x-3\right)
Subtract 12 from 2 to get -10.
-x^{2}+3x-10=4x-12
Use the distributive property to multiply 4 by x-3.
-x^{2}+3x-10-4x=-12
Subtract 4x from both sides.
-x^{2}-x-10=-12
Combine 3x and -4x to get -x.
-x^{2}-x=-12+10
Add 10 to both sides.
-x^{2}-x=-2
Add -12 and 10 to get -2.
\frac{-x^{2}-x}{-1}=-\frac{2}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{2}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+x=-\frac{2}{-1}
Divide -1 by -1.
x^{2}+x=2
Divide -2 by -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Add 2 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Simplify.
x=1 x=-2
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}