Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{2}-1}{2x^{2}+6x}\times \frac{2\left(x+3\right)}{5x\left(x-1\right)}
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{x^{2}-1}{2x^{2}+6x}\times \frac{2x+6}{5x\left(x-1\right)}
Use the distributive property to multiply 2 by x+3.
\frac{x^{2}-1}{2x^{2}+6x}\times \frac{2x+6}{5x^{2}-5x}
Use the distributive property to multiply 5x by x-1.
\frac{\left(x^{2}-1\right)\left(2x+6\right)}{\left(2x^{2}+6x\right)\left(5x^{2}-5x\right)}
Multiply \frac{x^{2}-1}{2x^{2}+6x} times \frac{2x+6}{5x^{2}-5x} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-1\right)\left(x+1\right)\left(x+3\right)}{2\times 5\left(x-1\right)\left(x+3\right)x^{2}}
Factor the expressions that are not already factored.
\frac{x+1}{5x^{2}}
Cancel out 2\left(x-1\right)\left(x+3\right) in both numerator and denominator.
\frac{x^{2}-1}{2x^{2}+6x}\times \frac{2\left(x+3\right)}{5x\left(x-1\right)}
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{x^{2}-1}{2x^{2}+6x}\times \frac{2x+6}{5x\left(x-1\right)}
Use the distributive property to multiply 2 by x+3.
\frac{x^{2}-1}{2x^{2}+6x}\times \frac{2x+6}{5x^{2}-5x}
Use the distributive property to multiply 5x by x-1.
\frac{\left(x^{2}-1\right)\left(2x+6\right)}{\left(2x^{2}+6x\right)\left(5x^{2}-5x\right)}
Multiply \frac{x^{2}-1}{2x^{2}+6x} times \frac{2x+6}{5x^{2}-5x} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-1\right)\left(x+1\right)\left(x+3\right)}{2\times 5\left(x-1\right)\left(x+3\right)x^{2}}
Factor the expressions that are not already factored.
\frac{x+1}{5x^{2}}
Cancel out 2\left(x-1\right)\left(x+3\right) in both numerator and denominator.