Solve for x
x=\frac{1}{6}\approx 0.166666667
x=6
Graph
Share
Copied to clipboard
6\left(x-1\right)^{2}-5\left(x+4\right)=10\times 2\left(x-1\right)
Multiply both sides of the equation by 30, the least common multiple of 5,6,3.
6\left(x^{2}-2x+1\right)-5\left(x+4\right)=10\times 2\left(x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
6x^{2}-12x+6-5\left(x+4\right)=10\times 2\left(x-1\right)
Use the distributive property to multiply 6 by x^{2}-2x+1.
6x^{2}-12x+6-5x-20=10\times 2\left(x-1\right)
Use the distributive property to multiply -5 by x+4.
6x^{2}-17x+6-20=10\times 2\left(x-1\right)
Combine -12x and -5x to get -17x.
6x^{2}-17x-14=10\times 2\left(x-1\right)
Subtract 20 from 6 to get -14.
6x^{2}-17x-14=20\left(x-1\right)
Multiply 10 and 2 to get 20.
6x^{2}-17x-14=20x-20
Use the distributive property to multiply 20 by x-1.
6x^{2}-17x-14-20x=-20
Subtract 20x from both sides.
6x^{2}-37x-14=-20
Combine -17x and -20x to get -37x.
6x^{2}-37x-14+20=0
Add 20 to both sides.
6x^{2}-37x+6=0
Add -14 and 20 to get 6.
a+b=-37 ab=6\times 6=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Calculate the sum for each pair.
a=-36 b=-1
The solution is the pair that gives sum -37.
\left(6x^{2}-36x\right)+\left(-x+6\right)
Rewrite 6x^{2}-37x+6 as \left(6x^{2}-36x\right)+\left(-x+6\right).
6x\left(x-6\right)-\left(x-6\right)
Factor out 6x in the first and -1 in the second group.
\left(x-6\right)\left(6x-1\right)
Factor out common term x-6 by using distributive property.
x=6 x=\frac{1}{6}
To find equation solutions, solve x-6=0 and 6x-1=0.
6\left(x-1\right)^{2}-5\left(x+4\right)=10\times 2\left(x-1\right)
Multiply both sides of the equation by 30, the least common multiple of 5,6,3.
6\left(x^{2}-2x+1\right)-5\left(x+4\right)=10\times 2\left(x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
6x^{2}-12x+6-5\left(x+4\right)=10\times 2\left(x-1\right)
Use the distributive property to multiply 6 by x^{2}-2x+1.
6x^{2}-12x+6-5x-20=10\times 2\left(x-1\right)
Use the distributive property to multiply -5 by x+4.
6x^{2}-17x+6-20=10\times 2\left(x-1\right)
Combine -12x and -5x to get -17x.
6x^{2}-17x-14=10\times 2\left(x-1\right)
Subtract 20 from 6 to get -14.
6x^{2}-17x-14=20\left(x-1\right)
Multiply 10 and 2 to get 20.
6x^{2}-17x-14=20x-20
Use the distributive property to multiply 20 by x-1.
6x^{2}-17x-14-20x=-20
Subtract 20x from both sides.
6x^{2}-37x-14=-20
Combine -17x and -20x to get -37x.
6x^{2}-37x-14+20=0
Add 20 to both sides.
6x^{2}-37x+6=0
Add -14 and 20 to get 6.
x=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}-4\times 6\times 6}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -37 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-37\right)±\sqrt{1369-4\times 6\times 6}}{2\times 6}
Square -37.
x=\frac{-\left(-37\right)±\sqrt{1369-24\times 6}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-37\right)±\sqrt{1369-144}}{2\times 6}
Multiply -24 times 6.
x=\frac{-\left(-37\right)±\sqrt{1225}}{2\times 6}
Add 1369 to -144.
x=\frac{-\left(-37\right)±35}{2\times 6}
Take the square root of 1225.
x=\frac{37±35}{2\times 6}
The opposite of -37 is 37.
x=\frac{37±35}{12}
Multiply 2 times 6.
x=\frac{72}{12}
Now solve the equation x=\frac{37±35}{12} when ± is plus. Add 37 to 35.
x=6
Divide 72 by 12.
x=\frac{2}{12}
Now solve the equation x=\frac{37±35}{12} when ± is minus. Subtract 35 from 37.
x=\frac{1}{6}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
x=6 x=\frac{1}{6}
The equation is now solved.
6\left(x-1\right)^{2}-5\left(x+4\right)=10\times 2\left(x-1\right)
Multiply both sides of the equation by 30, the least common multiple of 5,6,3.
6\left(x^{2}-2x+1\right)-5\left(x+4\right)=10\times 2\left(x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
6x^{2}-12x+6-5\left(x+4\right)=10\times 2\left(x-1\right)
Use the distributive property to multiply 6 by x^{2}-2x+1.
6x^{2}-12x+6-5x-20=10\times 2\left(x-1\right)
Use the distributive property to multiply -5 by x+4.
6x^{2}-17x+6-20=10\times 2\left(x-1\right)
Combine -12x and -5x to get -17x.
6x^{2}-17x-14=10\times 2\left(x-1\right)
Subtract 20 from 6 to get -14.
6x^{2}-17x-14=20\left(x-1\right)
Multiply 10 and 2 to get 20.
6x^{2}-17x-14=20x-20
Use the distributive property to multiply 20 by x-1.
6x^{2}-17x-14-20x=-20
Subtract 20x from both sides.
6x^{2}-37x-14=-20
Combine -17x and -20x to get -37x.
6x^{2}-37x=-20+14
Add 14 to both sides.
6x^{2}-37x=-6
Add -20 and 14 to get -6.
\frac{6x^{2}-37x}{6}=-\frac{6}{6}
Divide both sides by 6.
x^{2}-\frac{37}{6}x=-\frac{6}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{37}{6}x=-1
Divide -6 by 6.
x^{2}-\frac{37}{6}x+\left(-\frac{37}{12}\right)^{2}=-1+\left(-\frac{37}{12}\right)^{2}
Divide -\frac{37}{6}, the coefficient of the x term, by 2 to get -\frac{37}{12}. Then add the square of -\frac{37}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{37}{6}x+\frac{1369}{144}=-1+\frac{1369}{144}
Square -\frac{37}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{37}{6}x+\frac{1369}{144}=\frac{1225}{144}
Add -1 to \frac{1369}{144}.
\left(x-\frac{37}{12}\right)^{2}=\frac{1225}{144}
Factor x^{2}-\frac{37}{6}x+\frac{1369}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{12}\right)^{2}}=\sqrt{\frac{1225}{144}}
Take the square root of both sides of the equation.
x-\frac{37}{12}=\frac{35}{12} x-\frac{37}{12}=-\frac{35}{12}
Simplify.
x=6 x=\frac{1}{6}
Add \frac{37}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}