Solve for x
x=\frac{5\sqrt{3}}{2}+1\approx 5.330127019
x=-\frac{5\sqrt{3}}{2}+1\approx -3.330127019
Graph
Share
Copied to clipboard
\frac{\frac{1}{30}\left(x-1\right)^{2}}{\frac{1}{30}}=\frac{\frac{5}{8}}{\frac{1}{30}}
Multiply both sides by 30.
\left(x-1\right)^{2}=\frac{\frac{5}{8}}{\frac{1}{30}}
Dividing by \frac{1}{30} undoes the multiplication by \frac{1}{30}.
\left(x-1\right)^{2}=\frac{75}{4}
Divide \frac{5}{8} by \frac{1}{30} by multiplying \frac{5}{8} by the reciprocal of \frac{1}{30}.
x-1=\frac{5\sqrt{3}}{2} x-1=-\frac{5\sqrt{3}}{2}
Take the square root of both sides of the equation.
x-1-\left(-1\right)=\frac{5\sqrt{3}}{2}-\left(-1\right) x-1-\left(-1\right)=-\frac{5\sqrt{3}}{2}-\left(-1\right)
Add 1 to both sides of the equation.
x=\frac{5\sqrt{3}}{2}-\left(-1\right) x=-\frac{5\sqrt{3}}{2}-\left(-1\right)
Subtracting -1 from itself leaves 0.
x=\frac{5\sqrt{3}}{2}+1
Subtract -1 from \frac{5\sqrt{3}}{2}.
x=-\frac{5\sqrt{3}}{2}+1
Subtract -1 from -\frac{5\sqrt{3}}{2}.
x=\frac{5\sqrt{3}}{2}+1 x=-\frac{5\sqrt{3}}{2}+1
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}