Solve for x
x=-2.8
Graph
Share
Copied to clipboard
\frac{0.5x-0.2}{0.35}-\left(x+6.1\right)=\frac{\left(x-2.71\right)\times 0.6}{0.42}
Use the distributive property to multiply x-0.4 by 0.5.
\frac{0.5x-0.2}{0.35}-x-6.1=\frac{\left(x-2.71\right)\times 0.6}{0.42}
To find the opposite of x+6.1, find the opposite of each term.
\frac{0.5x-0.2}{0.35}-x-6.1=\frac{0.6x-1.626}{0.42}
Use the distributive property to multiply x-2.71 by 0.6.
\frac{0.5x}{0.35}+\frac{-0.2}{0.35}-x-6.1=\frac{0.6x-1.626}{0.42}
Divide each term of 0.5x-0.2 by 0.35 to get \frac{0.5x}{0.35}+\frac{-0.2}{0.35}.
\frac{10}{7}x+\frac{-0.2}{0.35}-x-6.1=\frac{0.6x-1.626}{0.42}
Divide 0.5x by 0.35 to get \frac{10}{7}x.
\frac{10}{7}x+\frac{-20}{35}-x-6.1=\frac{0.6x-1.626}{0.42}
Expand \frac{-0.2}{0.35} by multiplying both numerator and the denominator by 100.
\frac{10}{7}x-\frac{4}{7}-x-6.1=\frac{0.6x-1.626}{0.42}
Reduce the fraction \frac{-20}{35} to lowest terms by extracting and canceling out 5.
\frac{3}{7}x-\frac{4}{7}-6.1=\frac{0.6x-1.626}{0.42}
Combine \frac{10}{7}x and -x to get \frac{3}{7}x.
\frac{3}{7}x-\frac{4}{7}-\frac{61}{10}=\frac{0.6x-1.626}{0.42}
Convert decimal number 6.1 to fraction \frac{61}{10}.
\frac{3}{7}x-\frac{40}{70}-\frac{427}{70}=\frac{0.6x-1.626}{0.42}
Least common multiple of 7 and 10 is 70. Convert -\frac{4}{7} and \frac{61}{10} to fractions with denominator 70.
\frac{3}{7}x+\frac{-40-427}{70}=\frac{0.6x-1.626}{0.42}
Since -\frac{40}{70} and \frac{427}{70} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{7}x-\frac{467}{70}=\frac{0.6x-1.626}{0.42}
Subtract 427 from -40 to get -467.
\frac{3}{7}x-\frac{467}{70}=\frac{0.6x}{0.42}+\frac{-1.626}{0.42}
Divide each term of 0.6x-1.626 by 0.42 to get \frac{0.6x}{0.42}+\frac{-1.626}{0.42}.
\frac{3}{7}x-\frac{467}{70}=\frac{10}{7}x+\frac{-1.626}{0.42}
Divide 0.6x by 0.42 to get \frac{10}{7}x.
\frac{3}{7}x-\frac{467}{70}=\frac{10}{7}x+\frac{-1626}{420}
Expand \frac{-1.626}{0.42} by multiplying both numerator and the denominator by 1000.
\frac{3}{7}x-\frac{467}{70}=\frac{10}{7}x-\frac{271}{70}
Reduce the fraction \frac{-1626}{420} to lowest terms by extracting and canceling out 6.
\frac{3}{7}x-\frac{467}{70}-\frac{10}{7}x=-\frac{271}{70}
Subtract \frac{10}{7}x from both sides.
-x-\frac{467}{70}=-\frac{271}{70}
Combine \frac{3}{7}x and -\frac{10}{7}x to get -x.
-x=-\frac{271}{70}+\frac{467}{70}
Add \frac{467}{70} to both sides.
-x=\frac{-271+467}{70}
Since -\frac{271}{70} and \frac{467}{70} have the same denominator, add them by adding their numerators.
-x=\frac{196}{70}
Add -271 and 467 to get 196.
-x=\frac{14}{5}
Reduce the fraction \frac{196}{70} to lowest terms by extracting and canceling out 14.
x=-\frac{14}{5}
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}