Evaluate
-\frac{x\left(x-3\right)\left(x-1\right)}{2}
Expand
-\frac{x^{3}}{2}+2x^{2}-\frac{3x}{2}
Graph
Share
Copied to clipboard
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{2\left(2-1\right)\left(2-3\right)}
Subtract 0 from 2 to get 2.
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{2\times 1\left(2-3\right)}
Subtract 1 from 2 to get 1.
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{2\left(2-3\right)}
Multiply 2 and 1 to get 2.
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{2\left(-1\right)}
Subtract 3 from 2 to get -1.
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{-2}
Multiply 2 and -1 to get -2.
\frac{\left(\left(x-0\right)x-\left(x-0\right)\right)\left(x-3\right)}{-2}
Use the distributive property to multiply x-0 by x-1.
\frac{\left(x-0\right)x^{2}-3\left(x-0\right)x-\left(x-0\right)x+3\left(x-0\right)}{-2}
Apply the distributive property by multiplying each term of \left(x-0\right)x-\left(x-0\right) by each term of x-3.
\frac{\left(x-0\right)x^{2}-4\left(x-0\right)x+3\left(x-0\right)}{-2}
Combine -3\left(x-0\right)x and -\left(x-0\right)x to get -4\left(x-0\right)x.
\frac{\left(x+0\right)x^{2}-4\left(x-0\right)x+3\left(x-0\right)}{-2}
Multiply -1 and 0 to get 0.
\frac{xx^{2}-4\left(x-0\right)x+3\left(x-0\right)}{-2}
Anything plus zero gives itself.
\frac{x^{3}-4\left(x-0\right)x+3\left(x-0\right)}{-2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{x^{3}-4xx+3\left(x-0\right)}{-2}
Multiply -1 and 0 to get 0.
\frac{x^{3}-4x^{2}+3\left(x-0\right)}{-2}
Multiply x and x to get x^{2}.
\frac{x^{3}-4x^{2}+3\left(x+0\right)}{-2}
Multiply -1 and 0 to get 0.
\frac{x^{3}-4x^{2}+3x}{-2}
Anything plus zero gives itself.
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{2\left(2-1\right)\left(2-3\right)}
Subtract 0 from 2 to get 2.
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{2\times 1\left(2-3\right)}
Subtract 1 from 2 to get 1.
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{2\left(2-3\right)}
Multiply 2 and 1 to get 2.
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{2\left(-1\right)}
Subtract 3 from 2 to get -1.
\frac{\left(x-0\right)\left(x-1\right)\left(x-3\right)}{-2}
Multiply 2 and -1 to get -2.
\frac{\left(\left(x-0\right)x-\left(x-0\right)\right)\left(x-3\right)}{-2}
Use the distributive property to multiply x-0 by x-1.
\frac{\left(x-0\right)x^{2}-3\left(x-0\right)x-\left(x-0\right)x+3\left(x-0\right)}{-2}
Apply the distributive property by multiplying each term of \left(x-0\right)x-\left(x-0\right) by each term of x-3.
\frac{\left(x-0\right)x^{2}-4\left(x-0\right)x+3\left(x-0\right)}{-2}
Combine -3\left(x-0\right)x and -\left(x-0\right)x to get -4\left(x-0\right)x.
\frac{\left(x+0\right)x^{2}-4\left(x-0\right)x+3\left(x-0\right)}{-2}
Multiply -1 and 0 to get 0.
\frac{xx^{2}-4\left(x-0\right)x+3\left(x-0\right)}{-2}
Anything plus zero gives itself.
\frac{x^{3}-4\left(x-0\right)x+3\left(x-0\right)}{-2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{x^{3}-4xx+3\left(x-0\right)}{-2}
Multiply -1 and 0 to get 0.
\frac{x^{3}-4x^{2}+3\left(x-0\right)}{-2}
Multiply x and x to get x^{2}.
\frac{x^{3}-4x^{2}+3\left(x+0\right)}{-2}
Multiply -1 and 0 to get 0.
\frac{x^{3}-4x^{2}+3x}{-2}
Anything plus zero gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}