Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\frac{x^{12}\left(x^{3}y\right)^{-2}xy^{0}}{\left(x^{2}y^{2}\right)^{3}xy}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{x^{13}\left(x^{3}y\right)^{-2}y^{0}}{\left(x^{2}y^{2}\right)^{3}xy}
To multiply powers of the same base, add their exponents. Add 12 and 1 to get 13.
\frac{\left(yx^{3}\right)^{-2}y^{0}x^{12}}{y\left(x^{2}y^{2}\right)^{3}}
Cancel out x in both numerator and denominator.
\frac{\left(yx^{3}\right)^{-2}x^{12}}{y^{1}\left(x^{2}y^{2}\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{y^{-2}\left(x^{3}\right)^{-2}x^{12}}{y^{1}\left(x^{2}y^{2}\right)^{3}}
Expand \left(yx^{3}\right)^{-2}.
\frac{y^{-2}x^{-6}x^{12}}{y^{1}\left(x^{2}y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{y^{-2}x^{6}}{y^{1}\left(x^{2}y^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add -6 and 12 to get 6.
\frac{y^{-2}x^{6}}{y\left(x^{2}y^{2}\right)^{3}}
Calculate y to the power of 1 and get y.
\frac{y^{-2}x^{6}}{y\left(x^{2}\right)^{3}\left(y^{2}\right)^{3}}
Expand \left(x^{2}y^{2}\right)^{3}.
\frac{y^{-2}x^{6}}{yx^{6}\left(y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{y^{-2}x^{6}}{yx^{6}y^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{y^{-2}x^{6}}{y^{7}x^{6}}
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\frac{y^{-2}}{y^{7}}
Cancel out x^{6} in both numerator and denominator.
\frac{1}{y^{9}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x^{12}\left(x^{3}y\right)^{-2}xy^{0}}{\left(x^{2}y^{2}\right)^{3}xy})
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x^{13}\left(x^{3}y\right)^{-2}y^{0}}{\left(x^{2}y^{2}\right)^{3}xy})
To multiply powers of the same base, add their exponents. Add 12 and 1 to get 13.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\left(yx^{3}\right)^{-2}y^{0}x^{12}}{y\left(x^{2}y^{2}\right)^{3}})
Cancel out x in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\left(yx^{3}\right)^{-2}x^{12}}{y^{1}\left(x^{2}y^{2}\right)^{3}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{-2}\left(x^{3}\right)^{-2}x^{12}}{y^{1}\left(x^{2}y^{2}\right)^{3}})
Expand \left(yx^{3}\right)^{-2}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{-2}x^{-6}x^{12}}{y^{1}\left(x^{2}y^{2}\right)^{3}})
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{-2}x^{6}}{y^{1}\left(x^{2}y^{2}\right)^{3}})
To multiply powers of the same base, add their exponents. Add -6 and 12 to get 6.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{-2}x^{6}}{y\left(x^{2}y^{2}\right)^{3}})
Calculate y to the power of 1 and get y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{-2}x^{6}}{y\left(x^{2}\right)^{3}\left(y^{2}\right)^{3}})
Expand \left(x^{2}y^{2}\right)^{3}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{-2}x^{6}}{yx^{6}\left(y^{2}\right)^{3}})
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{-2}x^{6}}{yx^{6}y^{6}})
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{-2}x^{6}}{y^{7}x^{6}})
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{y^{-2}}{y^{7}})
Cancel out x^{6} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y^{9}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
-\left(y^{9}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(y^{9})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(y^{9}\right)^{-2}\times 9y^{9-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-9y^{8}\left(y^{9}\right)^{-2}
Simplify.