Solve for p
p=\frac{12}{xn^{2}}
x\neq 0\text{ and }n\neq 0
Solve for n (complex solution)
n=-2\sqrt{3}p^{-\frac{1}{2}}x^{-\frac{1}{2}}
n=2\sqrt{3}p^{-\frac{1}{2}}x^{-\frac{1}{2}}\text{, }x\neq 0\text{ and }p\neq 0
Solve for n
n=2\sqrt{\frac{3}{px}}
n=-2\sqrt{\frac{3}{px}}\text{, }\left(x>0\text{ and }p>0\right)\text{ or }\left(p<0\text{ and }x<0\right)
Graph
Share
Copied to clipboard
\frac{x^{-8}}{x\left(x^{-3}\right)^{3}}npnx=12
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{x^{-8}}{xx^{-9}}npnx=12
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{x^{-8}}{x^{-8}}npnx=12
To multiply powers of the same base, add their exponents. Add 1 and -9 to get -8.
\frac{x^{-8}}{x^{-8}}n^{2}px=12
Multiply n and n to get n^{2}.
1n^{2}px=12
Cancel out x^{-8} in both numerator and denominator.
pxn^{2}=12
Reorder the terms.
xn^{2}p=12
The equation is in standard form.
\frac{xn^{2}p}{xn^{2}}=\frac{12}{xn^{2}}
Divide both sides by xn^{2}.
p=\frac{12}{xn^{2}}
Dividing by xn^{2} undoes the multiplication by xn^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}