Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{2}\right)^{-3}\left(y^{3}\right)^{-3}\left(z^{-2}\right)^{-3}\left(x^{3}yz^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
Expand \left(x^{2}y^{3}z^{-2}\right)^{-3}.
\frac{x^{-6}\left(y^{3}\right)^{-3}\left(z^{-2}\right)^{-3}\left(x^{3}yz^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{x^{-6}y^{-9}\left(z^{-2}\right)^{-3}\left(x^{3}yz^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{x^{-6}y^{-9}z^{6}\left(x^{3}yz^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply -2 and -3 to get 6.
\frac{x^{-6}y^{-9}z^{6}\left(x^{3}\right)^{-\frac{1}{2}}y^{-\frac{1}{2}}\left(z^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
Expand \left(x^{3}yz^{3}\right)^{-\frac{1}{2}}.
\frac{x^{-6}y^{-9}z^{6}x^{-\frac{3}{2}}y^{-\frac{1}{2}}\left(z^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply 3 and -\frac{1}{2} to get -\frac{3}{2}.
\frac{x^{-6}y^{-9}z^{6}x^{-\frac{3}{2}}y^{-\frac{1}{2}}z^{-\frac{3}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply 3 and -\frac{1}{2} to get -\frac{3}{2}.
\frac{x^{-\frac{15}{2}}y^{-9}z^{6}y^{-\frac{1}{2}}z^{-\frac{3}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To multiply powers of the same base, add their exponents. Add -6 and -\frac{3}{2} to get -\frac{15}{2}.
\frac{x^{-\frac{15}{2}}y^{-\frac{19}{2}}z^{6}z^{-\frac{3}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To multiply powers of the same base, add their exponents. Add -9 and -\frac{1}{2} to get -\frac{19}{2}.
\frac{x^{-\frac{15}{2}}y^{-\frac{19}{2}}z^{\frac{9}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To multiply powers of the same base, add their exponents. Add 6 and -\frac{3}{2} to get \frac{9}{2}.
\frac{x^{-\frac{15}{2}}y^{-\frac{19}{2}}z^{\frac{9}{2}}}{x^{-\frac{5}{2}}y^{-\frac{5}{2}}\left(z^{-5}\right)^{-\frac{5}{2}}}
Expand \left(xyz^{-5}\right)^{-\frac{5}{2}}.
\frac{x^{-\frac{15}{2}}y^{-\frac{19}{2}}z^{\frac{9}{2}}}{x^{-\frac{5}{2}}y^{-\frac{5}{2}}z^{\frac{25}{2}}}
To raise a power to another power, multiply the exponents. Multiply -5 and -\frac{5}{2} to get \frac{25}{2}.
\frac{y^{-\frac{19}{2}}x^{-\frac{15}{2}}}{x^{-\frac{5}{2}}y^{-\frac{5}{2}}z^{8}}
Cancel out z^{\frac{9}{2}} in both numerator and denominator.
\frac{1}{x^{5}y^{7}z^{8}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.