Evaluate
\frac{\left(\frac{xy}{z^{\frac{13}{5}}}\right)^{\frac{5}{2}}}{y^{9}\sqrt{yz^{3}x^{15}}}
Differentiate w.r.t. x
\frac{5\times \left(\frac{xy}{yz^{\frac{13}{5}}z^{3}x^{\frac{17}{3}}}\right)^{\frac{3}{2}}\left(\left(yz^{3}x^{\frac{17}{3}}\right)^{\frac{3}{2}}-3xyz^{3}\sqrt{yz^{3}x^{15}}\right)}{2z^{\frac{13}{5}}y^{8}\sqrt{yz^{3}x^{15}}}
Share
Copied to clipboard
\frac{\left(x^{2}\right)^{-3}\left(y^{3}\right)^{-3}\left(z^{-2}\right)^{-3}\left(x^{3}yz^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
Expand \left(x^{2}y^{3}z^{-2}\right)^{-3}.
\frac{x^{-6}\left(y^{3}\right)^{-3}\left(z^{-2}\right)^{-3}\left(x^{3}yz^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{x^{-6}y^{-9}\left(z^{-2}\right)^{-3}\left(x^{3}yz^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply 3 and -3 to get -9.
\frac{x^{-6}y^{-9}z^{6}\left(x^{3}yz^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply -2 and -3 to get 6.
\frac{x^{-6}y^{-9}z^{6}\left(x^{3}\right)^{-\frac{1}{2}}y^{-\frac{1}{2}}\left(z^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
Expand \left(x^{3}yz^{3}\right)^{-\frac{1}{2}}.
\frac{x^{-6}y^{-9}z^{6}x^{-\frac{3}{2}}y^{-\frac{1}{2}}\left(z^{3}\right)^{-\frac{1}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply 3 and -\frac{1}{2} to get -\frac{3}{2}.
\frac{x^{-6}y^{-9}z^{6}x^{-\frac{3}{2}}y^{-\frac{1}{2}}z^{-\frac{3}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To raise a power to another power, multiply the exponents. Multiply 3 and -\frac{1}{2} to get -\frac{3}{2}.
\frac{x^{-\frac{15}{2}}y^{-9}z^{6}y^{-\frac{1}{2}}z^{-\frac{3}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To multiply powers of the same base, add their exponents. Add -6 and -\frac{3}{2} to get -\frac{15}{2}.
\frac{x^{-\frac{15}{2}}y^{-\frac{19}{2}}z^{6}z^{-\frac{3}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To multiply powers of the same base, add their exponents. Add -9 and -\frac{1}{2} to get -\frac{19}{2}.
\frac{x^{-\frac{15}{2}}y^{-\frac{19}{2}}z^{\frac{9}{2}}}{\left(xyz^{-5}\right)^{-\frac{5}{2}}}
To multiply powers of the same base, add their exponents. Add 6 and -\frac{3}{2} to get \frac{9}{2}.
\frac{x^{-\frac{15}{2}}y^{-\frac{19}{2}}z^{\frac{9}{2}}}{x^{-\frac{5}{2}}y^{-\frac{5}{2}}\left(z^{-5}\right)^{-\frac{5}{2}}}
Expand \left(xyz^{-5}\right)^{-\frac{5}{2}}.
\frac{x^{-\frac{15}{2}}y^{-\frac{19}{2}}z^{\frac{9}{2}}}{x^{-\frac{5}{2}}y^{-\frac{5}{2}}z^{\frac{25}{2}}}
To raise a power to another power, multiply the exponents. Multiply -5 and -\frac{5}{2} to get \frac{25}{2}.
\frac{y^{-\frac{19}{2}}x^{-\frac{15}{2}}}{x^{-\frac{5}{2}}y^{-\frac{5}{2}}z^{8}}
Cancel out z^{\frac{9}{2}} in both numerator and denominator.
\frac{1}{x^{5}y^{7}z^{8}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}