Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x^{6}x^{2^{4}}x^{-2^{3}}}{x^{-4^{2}}x^{\left(-3\right)^{2}}x^{12}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{x^{-2^{3}}x^{2^{4}}}{x^{-4^{2}}x^{6}x^{\left(-3\right)^{2}}}
Cancel out x^{6} in both numerator and denominator.
\frac{x^{-8}x^{2^{4}}}{x^{-4^{2}}x^{6}x^{\left(-3\right)^{2}}}
Calculate 2 to the power of 3 and get 8.
\frac{x^{-8}x^{16}}{x^{-4^{2}}x^{6}x^{\left(-3\right)^{2}}}
Calculate 2 to the power of 4 and get 16.
\frac{x^{8}}{x^{-4^{2}}x^{6}x^{\left(-3\right)^{2}}}
To multiply powers of the same base, add their exponents. Add -8 and 16 to get 8.
\frac{x^{8}}{x^{-16}x^{6}x^{\left(-3\right)^{2}}}
Calculate 4 to the power of 2 and get 16.
\frac{x^{8}}{x^{-10}x^{\left(-3\right)^{2}}}
To multiply powers of the same base, add their exponents. Add -16 and 6 to get -10.
\frac{x^{8}}{x^{-10}x^{9}}
Calculate -3 to the power of 2 and get 9.
\frac{x^{8}}{x^{-1}}
To multiply powers of the same base, add their exponents. Add -10 and 9 to get -1.
x^{9}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{6}x^{2^{4}}x^{-2^{3}}}{x^{-4^{2}}x^{\left(-3\right)^{2}}x^{12}})
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-2^{3}}x^{2^{4}}}{x^{-4^{2}}x^{6}x^{\left(-3\right)^{2}}})
Cancel out x^{6} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-8}x^{2^{4}}}{x^{-4^{2}}x^{6}x^{\left(-3\right)^{2}}})
Calculate 2 to the power of 3 and get 8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{-8}x^{16}}{x^{-4^{2}}x^{6}x^{\left(-3\right)^{2}}})
Calculate 2 to the power of 4 and get 16.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{8}}{x^{-4^{2}}x^{6}x^{\left(-3\right)^{2}}})
To multiply powers of the same base, add their exponents. Add -8 and 16 to get 8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{8}}{x^{-16}x^{6}x^{\left(-3\right)^{2}}})
Calculate 4 to the power of 2 and get 16.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{8}}{x^{-10}x^{\left(-3\right)^{2}}})
To multiply powers of the same base, add their exponents. Add -16 and 6 to get -10.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{8}}{x^{-10}x^{9}})
Calculate -3 to the power of 2 and get 9.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{8}}{x^{-1}})
To multiply powers of the same base, add their exponents. Add -10 and 9 to get -1.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{9})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
9x^{9-1}
The derivative of ax^{n} is nax^{n-1}.
9x^{8}
Subtract 1 from 9.