Skip to main content
Differentiate w.r.t. x
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{\frac{2}{3}}}{\left(x^{2}\right)^{\frac{5}{3}}})
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{\frac{2}{3}}}{x^{\frac{10}{3}}})
To raise a power to another power, multiply the exponents. Multiply 2 and \frac{5}{3} to get \frac{10}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{\frac{8}{3}}})
Rewrite x^{\frac{10}{3}} as x^{\frac{2}{3}}x^{\frac{8}{3}}. Cancel out x^{\frac{2}{3}} in both numerator and denominator.
-\left(x^{\frac{8}{3}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{8}{3}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{\frac{8}{3}}\right)^{-2}\times \frac{8}{3}x^{\frac{8}{3}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{8}{3}x^{\frac{5}{3}}\left(x^{\frac{8}{3}}\right)^{-2}
Simplify.