Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{-3}y\right)^{3}\times \left(2x^{\frac{3}{4}}y^{\frac{1}{2}}\right)^{2}}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
Divide \frac{\left(x^{-3}y\right)^{3}}{\left(3y^{\frac{2}{3}}\right)^{3}} by \frac{18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}{\left(2x^{\frac{3}{4}}y^{\frac{1}{2}}\right)^{2}} by multiplying \frac{\left(x^{-3}y\right)^{3}}{\left(3y^{\frac{2}{3}}\right)^{3}} by the reciprocal of \frac{18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}{\left(2x^{\frac{3}{4}}y^{\frac{1}{2}}\right)^{2}}.
\frac{\left(x^{-3}\right)^{3}y^{3}\times \left(2x^{\frac{3}{4}}y^{\frac{1}{2}}\right)^{2}}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
Expand \left(x^{-3}y\right)^{3}.
\frac{x^{-9}y^{3}\times \left(2x^{\frac{3}{4}}y^{\frac{1}{2}}\right)^{2}}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{x^{-9}y^{3}\times 2^{2}\left(x^{\frac{3}{4}}\right)^{2}\left(y^{\frac{1}{2}}\right)^{2}}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
Expand \left(2x^{\frac{3}{4}}y^{\frac{1}{2}}\right)^{2}.
\frac{x^{-9}y^{3}\times 2^{2}x^{\frac{3}{2}}\left(y^{\frac{1}{2}}\right)^{2}}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply \frac{3}{4} and 2 to get \frac{3}{2}.
\frac{x^{-9}y^{3}\times 2^{2}x^{\frac{3}{2}}y^{1}}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{2} and 2 to get 1.
\frac{x^{-9}y^{3}\times 4x^{\frac{3}{2}}y^{1}}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{x^{-9}y^{3}\times 4x^{\frac{3}{2}}y}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
Calculate y to the power of 1 and get y.
\frac{x^{-\frac{15}{2}}y^{3}\times 4y}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
To multiply powers of the same base, add their exponents. Add -9 and \frac{3}{2} to get -\frac{15}{2}.
\frac{x^{-\frac{15}{2}}y^{4}\times 4}{\left(3y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{x^{-\frac{15}{2}}y^{4}\times 4}{3^{3}\left(y^{\frac{2}{3}}\right)^{3}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
Expand \left(3y^{\frac{2}{3}}\right)^{3}.
\frac{x^{-\frac{15}{2}}y^{4}\times 4}{3^{3}y^{2}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply \frac{2}{3} and 3 to get 2.
\frac{x^{-\frac{15}{2}}y^{4}\times 4}{27y^{2}\times 18\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
Calculate 3 to the power of 3 and get 27.
\frac{x^{-\frac{15}{2}}y^{4}\times 4}{486y^{2}\left(x^{3}y^{-2}\right)^{\frac{1}{2}}}
Multiply 27 and 18 to get 486.
\frac{x^{-\frac{15}{2}}y^{4}\times 4}{486y^{2}\left(x^{3}\right)^{\frac{1}{2}}\left(y^{-2}\right)^{\frac{1}{2}}}
Expand \left(x^{3}y^{-2}\right)^{\frac{1}{2}}.
\frac{x^{-\frac{15}{2}}y^{4}\times 4}{486y^{2}x^{\frac{3}{2}}\left(y^{-2}\right)^{\frac{1}{2}}}
To raise a power to another power, multiply the exponents. Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{x^{-\frac{15}{2}}y^{4}\times 4}{486y^{2}x^{\frac{3}{2}}y^{-1}}
To raise a power to another power, multiply the exponents. Multiply -2 and \frac{1}{2} to get -1.
\frac{x^{-\frac{15}{2}}y^{4}\times 4}{486y^{1}x^{\frac{3}{2}}}
To multiply powers of the same base, add their exponents. Add 2 and -1 to get 1.
\frac{2x^{-\frac{15}{2}}y^{3}}{243x^{\frac{3}{2}}}
Cancel out 2y in both numerator and denominator.
\frac{2y^{3}}{243x^{9}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.