Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(x^{-3}\right)^{3}\left(y^{4}\right)^{3}}{\left(-3x^{2}y^{2}\right)^{2}}
Expand \left(x^{-3}y^{4}\right)^{3}.
\frac{x^{-9}\left(y^{4}\right)^{3}}{\left(-3x^{2}y^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{x^{-9}y^{12}}{\left(-3x^{2}y^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{x^{-9}y^{12}}{\left(-3\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}
Expand \left(-3x^{2}y^{2}\right)^{2}.
\frac{x^{-9}y^{12}}{\left(-3\right)^{2}x^{4}\left(y^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{x^{-9}y^{12}}{\left(-3\right)^{2}x^{4}y^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{x^{-9}y^{12}}{9x^{4}y^{4}}
Calculate -3 to the power of 2 and get 9.
\frac{x^{-9}y^{8}}{9x^{4}}
Cancel out y^{4} in both numerator and denominator.
\frac{y^{8}}{9x^{13}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(x^{-3}\right)^{3}\left(y^{4}\right)^{3}}{\left(-3x^{2}y^{2}\right)^{2}}
Expand \left(x^{-3}y^{4}\right)^{3}.
\frac{x^{-9}\left(y^{4}\right)^{3}}{\left(-3x^{2}y^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{x^{-9}y^{12}}{\left(-3x^{2}y^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\frac{x^{-9}y^{12}}{\left(-3\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}
Expand \left(-3x^{2}y^{2}\right)^{2}.
\frac{x^{-9}y^{12}}{\left(-3\right)^{2}x^{4}\left(y^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{x^{-9}y^{12}}{\left(-3\right)^{2}x^{4}y^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{x^{-9}y^{12}}{9x^{4}y^{4}}
Calculate -3 to the power of 2 and get 9.
\frac{x^{-9}y^{8}}{9x^{4}}
Cancel out y^{4} in both numerator and denominator.
\frac{y^{8}}{9x^{13}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.