Solve for x
x=\frac{\sqrt{1621}}{2}+1\approx 21.130822139
x=-\frac{\sqrt{1621}}{2}+1\approx -19.130822139
Graph
Share
Copied to clipboard
\left(x+x+1-4\right)\left(x-0.5\right)=405\times 2
Multiply both sides by 2.
\left(2x+1-4\right)\left(x-0.5\right)=405\times 2
Combine x and x to get 2x.
\left(2x-3\right)\left(x-0.5\right)=405\times 2
Subtract 4 from 1 to get -3.
2x^{2}-4x+1.5=405\times 2
Use the distributive property to multiply 2x-3 by x-0.5 and combine like terms.
2x^{2}-4x+1.5=810
Multiply 405 and 2 to get 810.
2x^{2}-4x+1.5-810=0
Subtract 810 from both sides.
2x^{2}-4x-808.5=0
Subtract 810 from 1.5 to get -808.5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-808.5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -808.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-808.5\right)}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-808.5\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16+6468}}{2\times 2}
Multiply -8 times -808.5.
x=\frac{-\left(-4\right)±\sqrt{6484}}{2\times 2}
Add 16 to 6468.
x=\frac{-\left(-4\right)±2\sqrt{1621}}{2\times 2}
Take the square root of 6484.
x=\frac{4±2\sqrt{1621}}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{1621}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{1621}+4}{4}
Now solve the equation x=\frac{4±2\sqrt{1621}}{4} when ± is plus. Add 4 to 2\sqrt{1621}.
x=\frac{\sqrt{1621}}{2}+1
Divide 4+2\sqrt{1621} by 4.
x=\frac{4-2\sqrt{1621}}{4}
Now solve the equation x=\frac{4±2\sqrt{1621}}{4} when ± is minus. Subtract 2\sqrt{1621} from 4.
x=-\frac{\sqrt{1621}}{2}+1
Divide 4-2\sqrt{1621} by 4.
x=\frac{\sqrt{1621}}{2}+1 x=-\frac{\sqrt{1621}}{2}+1
The equation is now solved.
\left(x+x+1-4\right)\left(x-0.5\right)=405\times 2
Multiply both sides by 2.
\left(2x+1-4\right)\left(x-0.5\right)=405\times 2
Combine x and x to get 2x.
\left(2x-3\right)\left(x-0.5\right)=405\times 2
Subtract 4 from 1 to get -3.
2x^{2}-4x+1.5=405\times 2
Use the distributive property to multiply 2x-3 by x-0.5 and combine like terms.
2x^{2}-4x+1.5=810
Multiply 405 and 2 to get 810.
2x^{2}-4x=810-1.5
Subtract 1.5 from both sides.
2x^{2}-4x=808.5
Subtract 1.5 from 810 to get 808.5.
\frac{2x^{2}-4x}{2}=\frac{808.5}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{808.5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-2x=\frac{808.5}{2}
Divide -4 by 2.
x^{2}-2x=404.25
Divide 808.5 by 2.
x^{2}-2x+1=404.25+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=405.25
Add 404.25 to 1.
\left(x-1\right)^{2}=405.25
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{405.25}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{1621}}{2} x-1=-\frac{\sqrt{1621}}{2}
Simplify.
x=\frac{\sqrt{1621}}{2}+1 x=-\frac{\sqrt{1621}}{2}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}