Solve for f
f=\frac{h+1}{he^{\frac{1}{x}}+1}
x\neq 0\text{ and }h\neq -1\text{ and }\left(h>0\text{ or }x\neq \frac{1}{\ln(-\frac{1}{h})}\right)\text{ and }h\neq 0
Solve for h
h=-\frac{1-f}{1-fe^{\frac{1}{x}}}
x\neq 0\text{ and }f\neq 1\text{ and }\left(f<0\text{ or }x\neq -\frac{1}{\ln(f)}\right)\text{ and }f\neq 0
Graph
Share
Copied to clipboard
x+hx-fx=fhxe^{\frac{1}{x}}
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by fhx.
x+hx-fx-fhxe^{\frac{1}{x}}=0
Subtract fhxe^{\frac{1}{x}} from both sides.
hx-fx-fhxe^{\frac{1}{x}}=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
-fx-fhxe^{\frac{1}{x}}=-x-hx
Subtract hx from both sides.
\left(-x-hxe^{\frac{1}{x}}\right)f=-x-hx
Combine all terms containing f.
\left(-hxe^{\frac{1}{x}}-x\right)f=-hx-x
The equation is in standard form.
\frac{\left(-hxe^{\frac{1}{x}}-x\right)f}{-hxe^{\frac{1}{x}}-x}=-\frac{x\left(h+1\right)}{-hxe^{\frac{1}{x}}-x}
Divide both sides by -x-hxe^{x^{-1}}.
f=-\frac{x\left(h+1\right)}{-hxe^{\frac{1}{x}}-x}
Dividing by -x-hxe^{x^{-1}} undoes the multiplication by -x-hxe^{x^{-1}}.
f=\frac{h+1}{he^{\frac{1}{x}}+1}
Divide -x\left(1+h\right) by -x-hxe^{x^{-1}}.
f=\frac{h+1}{he^{\frac{1}{x}}+1}\text{, }f\neq 0
Variable f cannot be equal to 0.
x+hx-fx=fhxe^{\frac{1}{x}}
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by fhx.
x+hx-fx-fhxe^{\frac{1}{x}}=0
Subtract fhxe^{\frac{1}{x}} from both sides.
hx-fx-fhxe^{\frac{1}{x}}=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
hx-fhxe^{\frac{1}{x}}=-x+fx
Add fx to both sides.
\left(x-fxe^{\frac{1}{x}}\right)h=-x+fx
Combine all terms containing h.
\left(x-fxe^{\frac{1}{x}}\right)h=fx-x
The equation is in standard form.
\frac{\left(x-fxe^{\frac{1}{x}}\right)h}{x-fxe^{\frac{1}{x}}}=\frac{x\left(f-1\right)}{x-fxe^{\frac{1}{x}}}
Divide both sides by x-fxe^{x^{-1}}.
h=\frac{x\left(f-1\right)}{x-fxe^{\frac{1}{x}}}
Dividing by x-fxe^{x^{-1}} undoes the multiplication by x-fxe^{x^{-1}}.
h=\frac{f-1}{1-fe^{\frac{1}{x}}}
Divide x\left(-1+f\right) by x-fxe^{x^{-1}}.
h=\frac{f-1}{1-fe^{\frac{1}{x}}}\text{, }h\neq 0
Variable h cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}