Solve for x
x = \frac{27 \sqrt{69560845802680541287937296241} + 6113795325112867}{625000000000000} = 21\frac{109880677090760}{625000000000000} \approx 21.175809083
x=\frac{6113795325112867-27\sqrt{69560845802680541287937296241}}{625000000000000}\approx -1.611664043
Graph
Share
Copied to clipboard
\frac{{(x + 5)} ^ {2}}{x + 2} = 32 \cdot 0.9238795325112867
Evaluate trigonometric functions in the problem
\left(x+5\right)^{2}=32\times 0.9238795325112867\left(x+2\right)
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
x^{2}+10x+25=32\times 0.9238795325112867\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}+10x+25=29.5641450403611744\left(x+2\right)
Multiply 32 and 0.9238795325112867 to get 29.5641450403611744.
x^{2}+10x+25=29.5641450403611744x+59.1282900807223488
Use the distributive property to multiply 29.5641450403611744 by x+2.
x^{2}+10x+25-29.5641450403611744x=59.1282900807223488
Subtract 29.5641450403611744x from both sides.
x^{2}-19.5641450403611744x+25=59.1282900807223488
Combine 10x and -29.5641450403611744x to get -19.5641450403611744x.
x^{2}-19.5641450403611744x+25-59.1282900807223488=0
Subtract 59.1282900807223488 from both sides.
x^{2}-19.5641450403611744x-34.1282900807223488=0
Subtract 59.1282900807223488 from 25 to get -34.1282900807223488.
x=\frac{-\left(-19.5641450403611744\right)±\sqrt{\left(-19.5641450403611744\right)^{2}-4\left(-34.1282900807223488\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -19.5641450403611744 for b, and -34.1282900807223488 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19.5641450403611744\right)±\sqrt{382.75577116028873829280039894721536-4\left(-34.1282900807223488\right)}}{2}
Square -19.5641450403611744 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-19.5641450403611744\right)±\sqrt{382.75577116028873829280039894721536+136.5131603228893952}}{2}
Multiply -4 times -34.1282900807223488.
x=\frac{-\left(-19.5641450403611744\right)±\sqrt{519.26893148317813349280039894721536}}{2}
Add 382.75577116028873829280039894721536 to 136.5131603228893952 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-19.5641450403611744\right)±\frac{27\sqrt{69560845802680541287937296241}}{312500000000000}}{2}
Take the square root of 519.26893148317813349280039894721536.
x=\frac{19.5641450403611744±\frac{27\sqrt{69560845802680541287937296241}}{312500000000000}}{2}
The opposite of -19.5641450403611744 is 19.5641450403611744.
x=\frac{27\sqrt{69560845802680541287937296241}+6113795325112867}{2\times 312500000000000}
Now solve the equation x=\frac{19.5641450403611744±\frac{27\sqrt{69560845802680541287937296241}}{312500000000000}}{2} when ± is plus. Add 19.5641450403611744 to \frac{27\sqrt{69560845802680541287937296241}}{312500000000000}.
x=\frac{27\sqrt{69560845802680541287937296241}+6113795325112867}{625000000000000}
Divide \frac{6113795325112867+27\sqrt{69560845802680541287937296241}}{312500000000000} by 2.
x=\frac{6113795325112867-27\sqrt{69560845802680541287937296241}}{2\times 312500000000000}
Now solve the equation x=\frac{19.5641450403611744±\frac{27\sqrt{69560845802680541287937296241}}{312500000000000}}{2} when ± is minus. Subtract \frac{27\sqrt{69560845802680541287937296241}}{312500000000000} from 19.5641450403611744.
x=\frac{6113795325112867-27\sqrt{69560845802680541287937296241}}{625000000000000}
Divide \frac{6113795325112867-27\sqrt{69560845802680541287937296241}}{312500000000000} by 2.
x=\frac{27\sqrt{69560845802680541287937296241}+6113795325112867}{625000000000000} x=\frac{6113795325112867-27\sqrt{69560845802680541287937296241}}{625000000000000}
The equation is now solved.
\frac{{(x + 5)} ^ {2}}{x + 2} = 32 \cdot 0.9238795325112867
Evaluate trigonometric functions in the problem
\left(x+5\right)^{2}=32\times 0.9238795325112867\left(x+2\right)
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
x^{2}+10x+25=32\times 0.9238795325112867\left(x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}+10x+25=29.5641450403611744\left(x+2\right)
Multiply 32 and 0.9238795325112867 to get 29.5641450403611744.
x^{2}+10x+25=29.5641450403611744x+59.1282900807223488
Use the distributive property to multiply 29.5641450403611744 by x+2.
x^{2}+10x+25-29.5641450403611744x=59.1282900807223488
Subtract 29.5641450403611744x from both sides.
x^{2}-19.5641450403611744x+25=59.1282900807223488
Combine 10x and -29.5641450403611744x to get -19.5641450403611744x.
x^{2}-19.5641450403611744x=59.1282900807223488-25
Subtract 25 from both sides.
x^{2}-19.5641450403611744x=34.1282900807223488
Subtract 25 from 59.1282900807223488 to get 34.1282900807223488.
x^{2}-19.5641450403611744x+\left(-9.7820725201805872\right)^{2}=34.1282900807223488+\left(-9.7820725201805872\right)^{2}
Divide -19.5641450403611744, the coefficient of the x term, by 2 to get -9.7820725201805872. Then add the square of -9.7820725201805872 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-19.5641450403611744x+95.68894279007218457320009973680384=34.1282900807223488+95.68894279007218457320009973680384
Square -9.7820725201805872 by squaring both the numerator and the denominator of the fraction.
x^{2}-19.5641450403611744x+95.68894279007218457320009973680384=129.81723287079453337320009973680384
Add 34.1282900807223488 to 95.68894279007218457320009973680384 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-9.7820725201805872\right)^{2}=129.81723287079453337320009973680384
Factor x^{2}-19.5641450403611744x+95.68894279007218457320009973680384. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9.7820725201805872\right)^{2}}=\sqrt{129.81723287079453337320009973680384}
Take the square root of both sides of the equation.
x-9.7820725201805872=\frac{27\sqrt{69560845802680541287937296241}}{625000000000000} x-9.7820725201805872=-\frac{27\sqrt{69560845802680541287937296241}}{625000000000000}
Simplify.
x=\frac{27\sqrt{69560845802680541287937296241}+6113795325112867}{625000000000000} x=\frac{6113795325112867-27\sqrt{69560845802680541287937296241}}{625000000000000}
Add 9.7820725201805872 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}