Solve for x
x = \frac{13}{4} = 3\frac{1}{4} = 3.25
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
\left(3x-3\right)\left(x+3\right)+3\left(x-2\right)\left(x-1\right)\left(-\frac{8}{3}\right)=\left(3x-6\right)\left(x+2\right)
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-2\right)\left(x-1\right), the least common multiple of x-2,3,x-1.
3x^{2}+6x-9+3\left(x-2\right)\left(x-1\right)\left(-\frac{8}{3}\right)=\left(3x-6\right)\left(x+2\right)
Use the distributive property to multiply 3x-3 by x+3 and combine like terms.
3x^{2}+6x-9-8\left(x-2\right)\left(x-1\right)=\left(3x-6\right)\left(x+2\right)
Multiply 3 and -\frac{8}{3} to get -8.
3x^{2}+6x-9+\left(-8x+16\right)\left(x-1\right)=\left(3x-6\right)\left(x+2\right)
Use the distributive property to multiply -8 by x-2.
3x^{2}+6x-9-8x^{2}+24x-16=\left(3x-6\right)\left(x+2\right)
Use the distributive property to multiply -8x+16 by x-1 and combine like terms.
-5x^{2}+6x-9+24x-16=\left(3x-6\right)\left(x+2\right)
Combine 3x^{2} and -8x^{2} to get -5x^{2}.
-5x^{2}+30x-9-16=\left(3x-6\right)\left(x+2\right)
Combine 6x and 24x to get 30x.
-5x^{2}+30x-25=\left(3x-6\right)\left(x+2\right)
Subtract 16 from -9 to get -25.
-5x^{2}+30x-25=3x^{2}-12
Use the distributive property to multiply 3x-6 by x+2 and combine like terms.
-5x^{2}+30x-25-3x^{2}=-12
Subtract 3x^{2} from both sides.
-8x^{2}+30x-25=-12
Combine -5x^{2} and -3x^{2} to get -8x^{2}.
-8x^{2}+30x-25+12=0
Add 12 to both sides.
-8x^{2}+30x-13=0
Add -25 and 12 to get -13.
x=\frac{-30±\sqrt{30^{2}-4\left(-8\right)\left(-13\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 30 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-8\right)\left(-13\right)}}{2\left(-8\right)}
Square 30.
x=\frac{-30±\sqrt{900+32\left(-13\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-30±\sqrt{900-416}}{2\left(-8\right)}
Multiply 32 times -13.
x=\frac{-30±\sqrt{484}}{2\left(-8\right)}
Add 900 to -416.
x=\frac{-30±22}{2\left(-8\right)}
Take the square root of 484.
x=\frac{-30±22}{-16}
Multiply 2 times -8.
x=-\frac{8}{-16}
Now solve the equation x=\frac{-30±22}{-16} when ± is plus. Add -30 to 22.
x=\frac{1}{2}
Reduce the fraction \frac{-8}{-16} to lowest terms by extracting and canceling out 8.
x=-\frac{52}{-16}
Now solve the equation x=\frac{-30±22}{-16} when ± is minus. Subtract 22 from -30.
x=\frac{13}{4}
Reduce the fraction \frac{-52}{-16} to lowest terms by extracting and canceling out 4.
x=\frac{1}{2} x=\frac{13}{4}
The equation is now solved.
\left(3x-3\right)\left(x+3\right)+3\left(x-2\right)\left(x-1\right)\left(-\frac{8}{3}\right)=\left(3x-6\right)\left(x+2\right)
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-2\right)\left(x-1\right), the least common multiple of x-2,3,x-1.
3x^{2}+6x-9+3\left(x-2\right)\left(x-1\right)\left(-\frac{8}{3}\right)=\left(3x-6\right)\left(x+2\right)
Use the distributive property to multiply 3x-3 by x+3 and combine like terms.
3x^{2}+6x-9-8\left(x-2\right)\left(x-1\right)=\left(3x-6\right)\left(x+2\right)
Multiply 3 and -\frac{8}{3} to get -8.
3x^{2}+6x-9+\left(-8x+16\right)\left(x-1\right)=\left(3x-6\right)\left(x+2\right)
Use the distributive property to multiply -8 by x-2.
3x^{2}+6x-9-8x^{2}+24x-16=\left(3x-6\right)\left(x+2\right)
Use the distributive property to multiply -8x+16 by x-1 and combine like terms.
-5x^{2}+6x-9+24x-16=\left(3x-6\right)\left(x+2\right)
Combine 3x^{2} and -8x^{2} to get -5x^{2}.
-5x^{2}+30x-9-16=\left(3x-6\right)\left(x+2\right)
Combine 6x and 24x to get 30x.
-5x^{2}+30x-25=\left(3x-6\right)\left(x+2\right)
Subtract 16 from -9 to get -25.
-5x^{2}+30x-25=3x^{2}-12
Use the distributive property to multiply 3x-6 by x+2 and combine like terms.
-5x^{2}+30x-25-3x^{2}=-12
Subtract 3x^{2} from both sides.
-8x^{2}+30x-25=-12
Combine -5x^{2} and -3x^{2} to get -8x^{2}.
-8x^{2}+30x=-12+25
Add 25 to both sides.
-8x^{2}+30x=13
Add -12 and 25 to get 13.
\frac{-8x^{2}+30x}{-8}=\frac{13}{-8}
Divide both sides by -8.
x^{2}+\frac{30}{-8}x=\frac{13}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{15}{4}x=\frac{13}{-8}
Reduce the fraction \frac{30}{-8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{15}{4}x=-\frac{13}{8}
Divide 13 by -8.
x^{2}-\frac{15}{4}x+\left(-\frac{15}{8}\right)^{2}=-\frac{13}{8}+\left(-\frac{15}{8}\right)^{2}
Divide -\frac{15}{4}, the coefficient of the x term, by 2 to get -\frac{15}{8}. Then add the square of -\frac{15}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{4}x+\frac{225}{64}=-\frac{13}{8}+\frac{225}{64}
Square -\frac{15}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{4}x+\frac{225}{64}=\frac{121}{64}
Add -\frac{13}{8} to \frac{225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{8}\right)^{2}=\frac{121}{64}
Factor x^{2}-\frac{15}{4}x+\frac{225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Take the square root of both sides of the equation.
x-\frac{15}{8}=\frac{11}{8} x-\frac{15}{8}=-\frac{11}{8}
Simplify.
x=\frac{13}{4} x=\frac{1}{2}
Add \frac{15}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}