Solve for x (complex solution)
x=\frac{-7+\sqrt{239}i}{6}\approx -1.166666667+2.576604139i
x=\frac{-\sqrt{239}i-7}{6}\approx -1.166666667-2.576604139i
Graph
Share
Copied to clipboard
2\left(x+1\right)\left(x-2\right)-5\left(x-1\right)\left(x+2\right)=30
Multiply both sides of the equation by 10, the least common multiple of 5,2.
\left(2x+2\right)\left(x-2\right)-5\left(x-1\right)\left(x+2\right)=30
Use the distributive property to multiply 2 by x+1.
2x^{2}-2x-4-5\left(x-1\right)\left(x+2\right)=30
Use the distributive property to multiply 2x+2 by x-2 and combine like terms.
2x^{2}-2x-4+\left(-5x+5\right)\left(x+2\right)=30
Use the distributive property to multiply -5 by x-1.
2x^{2}-2x-4-5x^{2}-5x+10=30
Use the distributive property to multiply -5x+5 by x+2 and combine like terms.
-3x^{2}-2x-4-5x+10=30
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-7x-4+10=30
Combine -2x and -5x to get -7x.
-3x^{2}-7x+6=30
Add -4 and 10 to get 6.
-3x^{2}-7x+6-30=0
Subtract 30 from both sides.
-3x^{2}-7x-24=0
Subtract 30 from 6 to get -24.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -7 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-3\right)\left(-24\right)}}{2\left(-3\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+12\left(-24\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-7\right)±\sqrt{49-288}}{2\left(-3\right)}
Multiply 12 times -24.
x=\frac{-\left(-7\right)±\sqrt{-239}}{2\left(-3\right)}
Add 49 to -288.
x=\frac{-\left(-7\right)±\sqrt{239}i}{2\left(-3\right)}
Take the square root of -239.
x=\frac{7±\sqrt{239}i}{2\left(-3\right)}
The opposite of -7 is 7.
x=\frac{7±\sqrt{239}i}{-6}
Multiply 2 times -3.
x=\frac{7+\sqrt{239}i}{-6}
Now solve the equation x=\frac{7±\sqrt{239}i}{-6} when ± is plus. Add 7 to i\sqrt{239}.
x=\frac{-\sqrt{239}i-7}{6}
Divide 7+i\sqrt{239} by -6.
x=\frac{-\sqrt{239}i+7}{-6}
Now solve the equation x=\frac{7±\sqrt{239}i}{-6} when ± is minus. Subtract i\sqrt{239} from 7.
x=\frac{-7+\sqrt{239}i}{6}
Divide 7-i\sqrt{239} by -6.
x=\frac{-\sqrt{239}i-7}{6} x=\frac{-7+\sqrt{239}i}{6}
The equation is now solved.
2\left(x+1\right)\left(x-2\right)-5\left(x-1\right)\left(x+2\right)=30
Multiply both sides of the equation by 10, the least common multiple of 5,2.
\left(2x+2\right)\left(x-2\right)-5\left(x-1\right)\left(x+2\right)=30
Use the distributive property to multiply 2 by x+1.
2x^{2}-2x-4-5\left(x-1\right)\left(x+2\right)=30
Use the distributive property to multiply 2x+2 by x-2 and combine like terms.
2x^{2}-2x-4+\left(-5x+5\right)\left(x+2\right)=30
Use the distributive property to multiply -5 by x-1.
2x^{2}-2x-4-5x^{2}-5x+10=30
Use the distributive property to multiply -5x+5 by x+2 and combine like terms.
-3x^{2}-2x-4-5x+10=30
Combine 2x^{2} and -5x^{2} to get -3x^{2}.
-3x^{2}-7x-4+10=30
Combine -2x and -5x to get -7x.
-3x^{2}-7x+6=30
Add -4 and 10 to get 6.
-3x^{2}-7x=30-6
Subtract 6 from both sides.
-3x^{2}-7x=24
Subtract 6 from 30 to get 24.
\frac{-3x^{2}-7x}{-3}=\frac{24}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{7}{-3}\right)x=\frac{24}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{7}{3}x=\frac{24}{-3}
Divide -7 by -3.
x^{2}+\frac{7}{3}x=-8
Divide 24 by -3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=-8+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{3}x+\frac{49}{36}=-8+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{3}x+\frac{49}{36}=-\frac{239}{36}
Add -8 to \frac{49}{36}.
\left(x+\frac{7}{6}\right)^{2}=-\frac{239}{36}
Factor x^{2}+\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{-\frac{239}{36}}
Take the square root of both sides of the equation.
x+\frac{7}{6}=\frac{\sqrt{239}i}{6} x+\frac{7}{6}=-\frac{\sqrt{239}i}{6}
Simplify.
x=\frac{-7+\sqrt{239}i}{6} x=\frac{-\sqrt{239}i-7}{6}
Subtract \frac{7}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}