Solve for y (complex solution)
y=-\frac{x^{2}+x+1}{1-x^{2}}
x\neq 1\text{ and }x\neq -1\text{ and }x\neq 0
Solve for y
y=-\frac{x^{2}+x+1}{1-x^{2}}
|x|\neq 1\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{4y^{2}-3}+1}{2\left(1-y\right)}\text{, }&y\neq 1\\x=\frac{\sqrt{4y^{2}-3}-1}{2\left(1-y\right)}\text{, }&y\neq 1\text{ and }y\neq -1\\x=-2\text{, }&y=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{4y^{2}-3}+1}{2\left(1-y\right)}\text{, }&\left(y\neq 1\text{ and }y\geq \frac{\sqrt{3}}{2}\right)\text{ or }y\leq -\frac{\sqrt{3}}{2}\\x=\frac{\sqrt{4y^{2}-3}-1}{2\left(1-y\right)}\text{, }&\left(y\neq 1\text{ and }y\geq \frac{\sqrt{3}}{2}\right)\text{ or }\left(y\neq -1\text{ and }y\leq -\frac{\sqrt{3}}{2}\right)\\x=-2\text{, }&y=1\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x+1\right)^{2}-\left(x-y\right)=yx^{2}
Multiply both sides of the equation by x^{2}.
x^{2}+2x+1-\left(x-y\right)=yx^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-x+y=yx^{2}
To find the opposite of x-y, find the opposite of each term.
x^{2}+x+1+y=yx^{2}
Combine 2x and -x to get x.
x^{2}+x+1+y-yx^{2}=0
Subtract yx^{2} from both sides.
x+1+y-yx^{2}=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
1+y-yx^{2}=-x^{2}-x
Subtract x from both sides.
y-yx^{2}=-x^{2}-x-1
Subtract 1 from both sides.
\left(1-x^{2}\right)y=-x^{2}-x-1
Combine all terms containing y.
\frac{\left(1-x^{2}\right)y}{1-x^{2}}=\frac{-x^{2}-x-1}{1-x^{2}}
Divide both sides by 1-x^{2}.
y=\frac{-x^{2}-x-1}{1-x^{2}}
Dividing by 1-x^{2} undoes the multiplication by 1-x^{2}.
y=-\frac{x^{2}+x+1}{1-x^{2}}
Divide -x^{2}-x-1 by 1-x^{2}.
\left(x+1\right)^{2}-\left(x-y\right)=yx^{2}
Multiply both sides of the equation by x^{2}.
x^{2}+2x+1-\left(x-y\right)=yx^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-x+y=yx^{2}
To find the opposite of x-y, find the opposite of each term.
x^{2}+x+1+y=yx^{2}
Combine 2x and -x to get x.
x^{2}+x+1+y-yx^{2}=0
Subtract yx^{2} from both sides.
x+1+y-yx^{2}=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
1+y-yx^{2}=-x^{2}-x
Subtract x from both sides.
y-yx^{2}=-x^{2}-x-1
Subtract 1 from both sides.
\left(1-x^{2}\right)y=-x^{2}-x-1
Combine all terms containing y.
\frac{\left(1-x^{2}\right)y}{1-x^{2}}=\frac{-x^{2}-x-1}{1-x^{2}}
Divide both sides by 1-x^{2}.
y=\frac{-x^{2}-x-1}{1-x^{2}}
Dividing by 1-x^{2} undoes the multiplication by 1-x^{2}.
y=-\frac{x^{2}+x+1}{1-x^{2}}
Divide -x^{2}-x-1 by 1-x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}