Evaluate
\frac{x+3}{6}
Expand
\frac{x}{6}+\frac{1}{2}
Graph
Share
Copied to clipboard
\frac{2\left(x+1\right)^{2}}{12}+\frac{\left(x-1\right)^{2}}{12}-\frac{x^{2}-1}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 12 is 12. Multiply \frac{\left(x+1\right)^{2}}{6} times \frac{2}{2}.
\frac{2\left(x+1\right)^{2}+\left(x-1\right)^{2}}{12}-\frac{x^{2}-1}{4}
Since \frac{2\left(x+1\right)^{2}}{12} and \frac{\left(x-1\right)^{2}}{12} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+4x+2+x^{2}-2x+1}{12}-\frac{x^{2}-1}{4}
Do the multiplications in 2\left(x+1\right)^{2}+\left(x-1\right)^{2}.
\frac{3x^{2}+2x+3}{12}-\frac{x^{2}-1}{4}
Combine like terms in 2x^{2}+4x+2+x^{2}-2x+1.
\frac{3x^{2}+2x+3}{12}-\frac{3\left(x^{2}-1\right)}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12 and 4 is 12. Multiply \frac{x^{2}-1}{4} times \frac{3}{3}.
\frac{3x^{2}+2x+3-3\left(x^{2}-1\right)}{12}
Since \frac{3x^{2}+2x+3}{12} and \frac{3\left(x^{2}-1\right)}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+2x+3-3x^{2}+3}{12}
Do the multiplications in 3x^{2}+2x+3-3\left(x^{2}-1\right).
\frac{2x+6}{12}
Combine like terms in 3x^{2}+2x+3-3x^{2}+3.
\frac{2\left(x+1\right)^{2}}{12}+\frac{\left(x-1\right)^{2}}{12}-\frac{x^{2}-1}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 12 is 12. Multiply \frac{\left(x+1\right)^{2}}{6} times \frac{2}{2}.
\frac{2\left(x+1\right)^{2}+\left(x-1\right)^{2}}{12}-\frac{x^{2}-1}{4}
Since \frac{2\left(x+1\right)^{2}}{12} and \frac{\left(x-1\right)^{2}}{12} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+4x+2+x^{2}-2x+1}{12}-\frac{x^{2}-1}{4}
Do the multiplications in 2\left(x+1\right)^{2}+\left(x-1\right)^{2}.
\frac{3x^{2}+2x+3}{12}-\frac{x^{2}-1}{4}
Combine like terms in 2x^{2}+4x+2+x^{2}-2x+1.
\frac{3x^{2}+2x+3}{12}-\frac{3\left(x^{2}-1\right)}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12 and 4 is 12. Multiply \frac{x^{2}-1}{4} times \frac{3}{3}.
\frac{3x^{2}+2x+3-3\left(x^{2}-1\right)}{12}
Since \frac{3x^{2}+2x+3}{12} and \frac{3\left(x^{2}-1\right)}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+2x+3-3x^{2}+3}{12}
Do the multiplications in 3x^{2}+2x+3-3\left(x^{2}-1\right).
\frac{2x+6}{12}
Combine like terms in 3x^{2}+2x+3-3x^{2}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}