Solve for K
K=-\frac{\left(x+1\right)^{2}}{3x-2}
x\neq \frac{2}{3}
Solve for x (complex solution)
x=\frac{\sqrt{K\left(9K+20\right)}-3K-2}{2}
x=\frac{-\sqrt{K\left(9K+20\right)}-3K-2}{2}
Solve for x
x=\frac{\sqrt{K\left(9K+20\right)}-3K-2}{2}
x=\frac{-\sqrt{K\left(9K+20\right)}-3K-2}{2}\text{, }K\leq -\frac{20}{9}\text{ or }K\geq 0
Graph
Share
Copied to clipboard
\left(x+1\right)^{2}=K\left(-3x+2\right)
Multiply both sides of the equation by -3x+2.
x^{2}+2x+1=K\left(-3x+2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1=-3Kx+2K
Use the distributive property to multiply K by -3x+2.
-3Kx+2K=x^{2}+2x+1
Swap sides so that all variable terms are on the left hand side.
\left(-3x+2\right)K=x^{2}+2x+1
Combine all terms containing K.
\left(2-3x\right)K=x^{2}+2x+1
The equation is in standard form.
\frac{\left(2-3x\right)K}{2-3x}=\frac{\left(x+1\right)^{2}}{2-3x}
Divide both sides by 2-3x.
K=\frac{\left(x+1\right)^{2}}{2-3x}
Dividing by 2-3x undoes the multiplication by 2-3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}