Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(u-vi\right)\left(v-vi\right)-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Multiply v+vi and v+vi to get \left(v+vi\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Combine v and -vi to get \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(\left(1+i\right)v\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Combine v and vi to get \left(1+i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(1+i\right)^{2}v^{2}}{\left(u+vi\right)\left(v-vi\right)}
Expand \left(\left(1+i\right)v\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(v-vi\right)}
Calculate 1+i to the power of 2 and get 2i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(1-i\right)v}
Combine v and -vi to get \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1-i\right)vi\right)v}
Use the distributive property to multiply u+vi by 1-i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-i^{2}\right)v\right)v}
Multiply 1-i times i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-\left(-1\right)\right)v\right)v}
By definition, i^{2} is -1.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1+i\right)v\right)v}
Do the multiplications in i-\left(-1\right). Reorder the terms.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply \left(1-i\right)u+\left(1+i\right)v by v.
\frac{\left(u-iv\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Multiply -1 and i to get -i.
\frac{\left(\left(1-i\right)u+\left(-1-i\right)v\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply u-iv by 1-i.
\frac{\left(1-i\right)uv+\left(-1-i\right)v^{2}-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply \left(1-i\right)u+\left(-1-i\right)v by v.
\frac{\left(1-i\right)uv+\left(-1-3i\right)v^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Combine \left(-1-i\right)v^{2} and -2iv^{2} to get \left(-1-3i\right)v^{2}.
\frac{\left(u-vi\right)\left(v-vi\right)-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Multiply v+vi and v+vi to get \left(v+vi\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Combine v and -vi to get \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(\left(1+i\right)v\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Combine v and vi to get \left(1+i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(1+i\right)^{2}v^{2}}{\left(u+vi\right)\left(v-vi\right)}
Expand \left(\left(1+i\right)v\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(v-vi\right)}
Calculate 1+i to the power of 2 and get 2i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(1-i\right)v}
Combine v and -vi to get \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1-i\right)vi\right)v}
Use the distributive property to multiply u+vi by 1-i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-i^{2}\right)v\right)v}
Multiply 1-i times i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-\left(-1\right)\right)v\right)v}
By definition, i^{2} is -1.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1+i\right)v\right)v}
Do the multiplications in i-\left(-1\right). Reorder the terms.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply \left(1-i\right)u+\left(1+i\right)v by v.
\frac{\left(u-iv\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Multiply -1 and i to get -i.
\frac{\left(\left(1-i\right)u+\left(-1-i\right)v\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply u-iv by 1-i.
\frac{\left(1-i\right)uv+\left(-1-i\right)v^{2}-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply \left(1-i\right)u+\left(-1-i\right)v by v.
\frac{\left(1-i\right)uv+\left(-1-3i\right)v^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Combine \left(-1-i\right)v^{2} and -2iv^{2} to get \left(-1-3i\right)v^{2}.