Evaluate
\frac{iu+\left(2+i\right)v}{iu-v}
Expand
\frac{u+\left(1-2i\right)v}{u+iv}
Share
Copied to clipboard
\frac{\left(u-vi\right)\left(v-vi\right)-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Multiply v+vi and v+vi to get \left(v+vi\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Combine v and -vi to get \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(\left(1+i\right)v\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Combine v and vi to get \left(1+i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(1+i\right)^{2}v^{2}}{\left(u+vi\right)\left(v-vi\right)}
Expand \left(\left(1+i\right)v\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(v-vi\right)}
Calculate 1+i to the power of 2 and get 2i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(1-i\right)v}
Combine v and -vi to get \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1-i\right)vi\right)v}
Use the distributive property to multiply u+vi by 1-i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-i^{2}\right)v\right)v}
Multiply 1-i times i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-\left(-1\right)\right)v\right)v}
By definition, i^{2} is -1.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1+i\right)v\right)v}
Do the multiplications in i-\left(-1\right). Reorder the terms.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply \left(1-i\right)u+\left(1+i\right)v by v.
\frac{\left(u-iv\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Multiply -1 and i to get -i.
\frac{\left(\left(1-i\right)u+\left(-1-i\right)v\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply u-iv by 1-i.
\frac{\left(1-i\right)uv+\left(-1-i\right)v^{2}-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply \left(1-i\right)u+\left(-1-i\right)v by v.
\frac{\left(1-i\right)uv+\left(-1-3i\right)v^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Combine \left(-1-i\right)v^{2} and -2iv^{2} to get \left(-1-3i\right)v^{2}.
\frac{\left(u-vi\right)\left(v-vi\right)-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Multiply v+vi and v+vi to get \left(v+vi\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Combine v and -vi to get \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(\left(1+i\right)v\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Combine v and vi to get \left(1+i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(1+i\right)^{2}v^{2}}{\left(u+vi\right)\left(v-vi\right)}
Expand \left(\left(1+i\right)v\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(v-vi\right)}
Calculate 1+i to the power of 2 and get 2i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(1-i\right)v}
Combine v and -vi to get \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1-i\right)vi\right)v}
Use the distributive property to multiply u+vi by 1-i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-i^{2}\right)v\right)v}
Multiply 1-i times i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-\left(-1\right)\right)v\right)v}
By definition, i^{2} is -1.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1+i\right)v\right)v}
Do the multiplications in i-\left(-1\right). Reorder the terms.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply \left(1-i\right)u+\left(1+i\right)v by v.
\frac{\left(u-iv\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Multiply -1 and i to get -i.
\frac{\left(\left(1-i\right)u+\left(-1-i\right)v\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply u-iv by 1-i.
\frac{\left(1-i\right)uv+\left(-1-i\right)v^{2}-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Use the distributive property to multiply \left(1-i\right)u+\left(-1-i\right)v by v.
\frac{\left(1-i\right)uv+\left(-1-3i\right)v^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Combine \left(-1-i\right)v^{2} and -2iv^{2} to get \left(-1-3i\right)v^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}