Evaluate
\frac{64s^{6}}{r^{8}}
Expand
\frac{64s^{6}}{r^{8}}
Share
Copied to clipboard
\frac{\left(r^{2}\right)^{-1}\left(s^{-1}\right)^{-1}\left(r^{-3}s\right)^{2}}{\left(4s\right)^{-3}}
Expand \left(r^{2}s^{-1}\right)^{-1}.
\frac{r^{-2}\left(s^{-1}\right)^{-1}\left(r^{-3}s\right)^{2}}{\left(4s\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{r^{-2}s^{1}\left(r^{-3}s\right)^{2}}{\left(4s\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -1 and -1 to get 1.
\frac{r^{-2}s\left(r^{-3}s\right)^{2}}{\left(4s\right)^{-3}}
Calculate s to the power of 1 and get s.
\frac{r^{-2}s\left(r^{-3}\right)^{2}s^{2}}{\left(4s\right)^{-3}}
Expand \left(r^{-3}s\right)^{2}.
\frac{r^{-2}sr^{-6}s^{2}}{\left(4s\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{r^{-8}ss^{2}}{\left(4s\right)^{-3}}
To multiply powers of the same base, add their exponents. Add -2 and -6 to get -8.
\frac{r^{-8}s^{3}}{\left(4s\right)^{-3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{r^{-8}s^{3}}{4^{-3}s^{-3}}
Expand \left(4s\right)^{-3}.
\frac{r^{-8}s^{3}}{\frac{1}{64}s^{-3}}
Calculate 4 to the power of -3 and get \frac{1}{64}.
\frac{r^{-8}s^{6}}{\frac{1}{64}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
r^{-8}s^{6}\times 64
Divide r^{-8}s^{6} by \frac{1}{64} by multiplying r^{-8}s^{6} by the reciprocal of \frac{1}{64}.
\frac{\left(r^{2}\right)^{-1}\left(s^{-1}\right)^{-1}\left(r^{-3}s\right)^{2}}{\left(4s\right)^{-3}}
Expand \left(r^{2}s^{-1}\right)^{-1}.
\frac{r^{-2}\left(s^{-1}\right)^{-1}\left(r^{-3}s\right)^{2}}{\left(4s\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{r^{-2}s^{1}\left(r^{-3}s\right)^{2}}{\left(4s\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -1 and -1 to get 1.
\frac{r^{-2}s\left(r^{-3}s\right)^{2}}{\left(4s\right)^{-3}}
Calculate s to the power of 1 and get s.
\frac{r^{-2}s\left(r^{-3}\right)^{2}s^{2}}{\left(4s\right)^{-3}}
Expand \left(r^{-3}s\right)^{2}.
\frac{r^{-2}sr^{-6}s^{2}}{\left(4s\right)^{-3}}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\frac{r^{-8}ss^{2}}{\left(4s\right)^{-3}}
To multiply powers of the same base, add their exponents. Add -2 and -6 to get -8.
\frac{r^{-8}s^{3}}{\left(4s\right)^{-3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{r^{-8}s^{3}}{4^{-3}s^{-3}}
Expand \left(4s\right)^{-3}.
\frac{r^{-8}s^{3}}{\frac{1}{64}s^{-3}}
Calculate 4 to the power of -3 and get \frac{1}{64}.
\frac{r^{-8}s^{6}}{\frac{1}{64}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
r^{-8}s^{6}\times 64
Divide r^{-8}s^{6} by \frac{1}{64} by multiplying r^{-8}s^{6} by the reciprocal of \frac{1}{64}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}