Evaluate
\frac{n}{3}-\frac{1}{3n}
Expand
\frac{n}{3}-\frac{1}{3n}
Quiz
Polynomial
5 problems similar to:
\frac { ( n + 1 ) ( \frac { n } { 3 } - \frac { 1 } { 3 } ) } { n }
Share
Copied to clipboard
\frac{\left(n+1\right)\times \frac{n-1}{3}}{n}
Since \frac{n}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(n+1\right)\left(n-1\right)}{3}}{n}
Express \left(n+1\right)\times \frac{n-1}{3} as a single fraction.
\frac{\left(n+1\right)\left(n-1\right)}{3n}
Express \frac{\frac{\left(n+1\right)\left(n-1\right)}{3}}{n} as a single fraction.
\frac{n^{2}-1^{2}}{3n}
Consider \left(n+1\right)\left(n-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{n^{2}-1}{3n}
Calculate 1 to the power of 2 and get 1.
\frac{\left(n+1\right)\times \frac{n-1}{3}}{n}
Since \frac{n}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(n+1\right)\left(n-1\right)}{3}}{n}
Express \left(n+1\right)\times \frac{n-1}{3} as a single fraction.
\frac{\left(n+1\right)\left(n-1\right)}{3n}
Express \frac{\frac{\left(n+1\right)\left(n-1\right)}{3}}{n} as a single fraction.
\frac{n^{2}-1^{2}}{3n}
Consider \left(n+1\right)\left(n-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{n^{2}-1}{3n}
Calculate 1 to the power of 2 and get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}