Evaluate
\frac{729e^{2}}{128000000000000}\approx 4.208298356 \cdot 10^{-11}
Expand
\frac{729e^{2}}{128000000000000}
Share
Copied to clipboard
\frac{\left(e\times 6\times \frac{1}{10000000000000000000}\right)^{2}\times 0.15^{2}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
\frac{\left(e\times \frac{3}{5000000000000000000}\right)^{2}\times 0.15^{2}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Multiply 6 and \frac{1}{10000000000000000000} to get \frac{3}{5000000000000000000}.
\frac{e^{2}\times \left(\frac{3}{5000000000000000000}\right)^{2}\times 0.15^{2}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Expand \left(e\times \frac{3}{5000000000000000000}\right)^{2}.
\frac{e^{2}\times \frac{9}{25000000000000000000000000000000000000}\times 0.15^{2}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Calculate \frac{3}{5000000000000000000} to the power of 2 and get \frac{9}{25000000000000000000000000000000000000}.
\frac{e^{2}\times \frac{9}{25000000000000000000000000000000000000}\times 0.0225\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Calculate 0.15 to the power of 2 and get 0.0225.
\frac{e^{2}\times \frac{81}{10000000000000000000000000000000000000000}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Multiply \frac{9}{25000000000000000000000000000000000000} and 0.0225 to get \frac{81}{10000000000000000000000000000000000000000}.
\frac{e^{2}\times \frac{81}{10000000000000000000000000000000000000000}\times 2.25}{2\times 1.6\times 10^{-27}}
Calculate 1.5 to the power of 2 and get 2.25.
\frac{e^{2}\times \frac{729}{40000000000000000000000000000000000000000}}{2\times 1.6\times 10^{-27}}
Multiply \frac{81}{10000000000000000000000000000000000000000} and 2.25 to get \frac{729}{40000000000000000000000000000000000000000}.
\frac{e^{2}\times \frac{729}{40000000000000000000000000000000000000000}}{3.2\times 10^{-27}}
Multiply 2 and 1.6 to get 3.2.
\frac{e^{2}\times \frac{729}{40000000000000000000000000000000000000000}}{3.2\times \frac{1}{1000000000000000000000000000}}
Calculate 10 to the power of -27 and get \frac{1}{1000000000000000000000000000}.
\frac{e^{2}\times \frac{729}{40000000000000000000000000000000000000000}}{\frac{1}{312500000000000000000000000}}
Multiply 3.2 and \frac{1}{1000000000000000000000000000} to get \frac{1}{312500000000000000000000000}.
e^{2}\times \frac{729}{40000000000000000000000000000000000000000}\times 312500000000000000000000000
Divide e^{2}\times \frac{729}{40000000000000000000000000000000000000000} by \frac{1}{312500000000000000000000000} by multiplying e^{2}\times \frac{729}{40000000000000000000000000000000000000000} by the reciprocal of \frac{1}{312500000000000000000000000}.
e^{2}\times \frac{729}{128000000000000}
Multiply \frac{729}{40000000000000000000000000000000000000000} and 312500000000000000000000000 to get \frac{729}{128000000000000}.
\frac{\left(e\times 6\times \frac{1}{10000000000000000000}\right)^{2}\times 0.15^{2}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
\frac{\left(e\times \frac{3}{5000000000000000000}\right)^{2}\times 0.15^{2}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Multiply 6 and \frac{1}{10000000000000000000} to get \frac{3}{5000000000000000000}.
\frac{e^{2}\times \left(\frac{3}{5000000000000000000}\right)^{2}\times 0.15^{2}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Expand \left(e\times \frac{3}{5000000000000000000}\right)^{2}.
\frac{e^{2}\times \frac{9}{25000000000000000000000000000000000000}\times 0.15^{2}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Calculate \frac{3}{5000000000000000000} to the power of 2 and get \frac{9}{25000000000000000000000000000000000000}.
\frac{e^{2}\times \frac{9}{25000000000000000000000000000000000000}\times 0.0225\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Calculate 0.15 to the power of 2 and get 0.0225.
\frac{e^{2}\times \frac{81}{10000000000000000000000000000000000000000}\times 1.5^{2}}{2\times 1.6\times 10^{-27}}
Multiply \frac{9}{25000000000000000000000000000000000000} and 0.0225 to get \frac{81}{10000000000000000000000000000000000000000}.
\frac{e^{2}\times \frac{81}{10000000000000000000000000000000000000000}\times 2.25}{2\times 1.6\times 10^{-27}}
Calculate 1.5 to the power of 2 and get 2.25.
\frac{e^{2}\times \frac{729}{40000000000000000000000000000000000000000}}{2\times 1.6\times 10^{-27}}
Multiply \frac{81}{10000000000000000000000000000000000000000} and 2.25 to get \frac{729}{40000000000000000000000000000000000000000}.
\frac{e^{2}\times \frac{729}{40000000000000000000000000000000000000000}}{3.2\times 10^{-27}}
Multiply 2 and 1.6 to get 3.2.
\frac{e^{2}\times \frac{729}{40000000000000000000000000000000000000000}}{3.2\times \frac{1}{1000000000000000000000000000}}
Calculate 10 to the power of -27 and get \frac{1}{1000000000000000000000000000}.
\frac{e^{2}\times \frac{729}{40000000000000000000000000000000000000000}}{\frac{1}{312500000000000000000000000}}
Multiply 3.2 and \frac{1}{1000000000000000000000000000} to get \frac{1}{312500000000000000000000000}.
e^{2}\times \frac{729}{40000000000000000000000000000000000000000}\times 312500000000000000000000000
Divide e^{2}\times \frac{729}{40000000000000000000000000000000000000000} by \frac{1}{312500000000000000000000000} by multiplying e^{2}\times \frac{729}{40000000000000000000000000000000000000000} by the reciprocal of \frac{1}{312500000000000000000000000}.
e^{2}\times \frac{729}{128000000000000}
Multiply \frac{729}{40000000000000000000000000000000000000000} and 312500000000000000000000000 to get \frac{729}{128000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}