Solve for f (complex solution)
f=\frac{ie^{\left(2-i\right)x}-ie^{\left(2+i\right)x}-2\sin(x)}{2xe^{x}}
x\neq 0
Solve for f
f=\frac{\sin(x)\left(e^{2x}-1\right)}{xe^{x}}
x\neq 0
Graph
Share
Copied to clipboard
\left(e^{x}-e^{-x}\right)\sin(x)=fx
Multiply both sides of the equation by x.
fx=\left(e^{x}-e^{-x}\right)\sin(x)
Swap sides so that all variable terms are on the left hand side.
fx=e^{x}\sin(x)-e^{-x}\sin(x)
Use the distributive property to multiply e^{x}-e^{-x} by \sin(x).
xf=\sin(x)e^{x}-\frac{\sin(x)}{e^{x}}
The equation is in standard form.
\frac{xf}{x}=\frac{\sin(x)\left(-\frac{1}{e^{x}}+e^{x}\right)}{x}
Divide both sides by x.
f=\frac{\sin(x)\left(-\frac{1}{e^{x}}+e^{x}\right)}{x}
Dividing by x undoes the multiplication by x.
\left(e^{x}-e^{-x}\right)\sin(x)=fx
Multiply both sides of the equation by x.
fx=\left(e^{x}-e^{-x}\right)\sin(x)
Swap sides so that all variable terms are on the left hand side.
fx=e^{x}\sin(x)-e^{-x}\sin(x)
Use the distributive property to multiply e^{x}-e^{-x} by \sin(x).
xf=\sin(x)e^{x}-\frac{\sin(x)}{e^{x}}
The equation is in standard form.
\frac{xf}{x}=\frac{\sin(x)\left(-\frac{1}{e^{x}}+e^{x}\right)}{x}
Divide both sides by x.
f=\frac{\sin(x)\left(-\frac{1}{e^{x}}+e^{x}\right)}{x}
Dividing by x undoes the multiplication by x.
f=\frac{\sin(x)\left(e^{2x}-1\right)}{xe^{x}}
Divide \sin(x)\left(e^{x}-\frac{1}{e^{x}}\right) by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}