\frac { ( d + c ) ^ { 2 } } { d - c } \cdot \frac { d } { d ^ { 2 } + d c }
Evaluate
\frac{c+d}{d-c}
Expand
\frac{c+d}{d-c}
Quiz
5 problems similar to:
\frac { ( d + c ) ^ { 2 } } { d - c } \cdot \frac { d } { d ^ { 2 } + d c }
Share
Copied to clipboard
\frac{\left(d+c\right)^{2}}{d-c}\times \frac{d}{d\left(c+d\right)}
Factor the expressions that are not already factored in \frac{d}{d^{2}+dc}.
\frac{\left(d+c\right)^{2}}{d-c}\times \frac{1}{c+d}
Cancel out d in both numerator and denominator.
\frac{\left(d+c\right)^{2}}{\left(d-c\right)\left(c+d\right)}
Multiply \frac{\left(d+c\right)^{2}}{d-c} times \frac{1}{c+d} by multiplying numerator times numerator and denominator times denominator.
\frac{c+d}{-c+d}
Cancel out c+d in both numerator and denominator.
\frac{\left(d+c\right)^{2}}{d-c}\times \frac{d}{d\left(c+d\right)}
Factor the expressions that are not already factored in \frac{d}{d^{2}+dc}.
\frac{\left(d+c\right)^{2}}{d-c}\times \frac{1}{c+d}
Cancel out d in both numerator and denominator.
\frac{\left(d+c\right)^{2}}{\left(d-c\right)\left(c+d\right)}
Multiply \frac{\left(d+c\right)^{2}}{d-c} times \frac{1}{c+d} by multiplying numerator times numerator and denominator times denominator.
\frac{c+d}{-c+d}
Cancel out c+d in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}