Evaluate
b^{6}
Differentiate w.r.t. b
6b^{5}
Share
Copied to clipboard
\left(b^{2}\right)^{5}\times \frac{1}{b^{4}}
Use the rules of exponents to simplify the expression.
b^{2\times 5}b^{4\left(-1\right)}
To raise a power to another power, multiply the exponents.
b^{10}b^{4\left(-1\right)}
Multiply 2 times 5.
b^{10}b^{-4}
Multiply 4 times -1.
b^{10-4}
To multiply powers of the same base, add their exponents.
b^{6}
Add the exponents 10 and -4.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b^{10}}{b^{4}})
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{\mathrm{d}}{\mathrm{d}b}(b^{6})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 4 from 10 to get 6.
6b^{6-1}
The derivative of ax^{n} is nax^{n-1}.
6b^{5}
Subtract 1 from 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}