Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a-3\right)^{2}\left(2+b\right)}{\left(4-b^{2}\right)\left(3-a\right)}\times \frac{a^{2}}{3a-9}
Multiply \frac{\left(a-3\right)^{2}}{4-b^{2}} times \frac{2+b}{3-a} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-3\right)^{2}\left(2+b\right)a^{2}}{\left(4-b^{2}\right)\left(3-a\right)\left(3a-9\right)}
Multiply \frac{\left(a-3\right)^{2}\left(2+b\right)}{\left(4-b^{2}\right)\left(3-a\right)} times \frac{a^{2}}{3a-9} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(b+2\right)a^{2}\left(a-3\right)^{2}}{3\left(a-3\right)\left(b-2\right)\left(-b-2\right)\left(-a+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(-b-2\right)a^{2}\left(a-3\right)^{2}}{3\left(a-3\right)\left(b-2\right)\left(-b-2\right)\left(-a+3\right)}
Extract the negative sign in 2+b.
\frac{-\left(a-3\right)a^{2}}{3\left(b-2\right)\left(-a+3\right)}
Cancel out \left(a-3\right)\left(-b-2\right) in both numerator and denominator.
\frac{-a^{3}+3a^{2}}{-3ab+6a+9b-18}
Expand the expression.
\frac{\left(-a+3\right)a^{2}}{3\left(a-3\right)\left(-b+2\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-3\right)a^{2}}{3\left(a-3\right)\left(-b+2\right)}
Extract the negative sign in 3-a.
\frac{-a^{2}}{3\left(-b+2\right)}
Cancel out a-3 in both numerator and denominator.
\frac{-a^{2}}{-3b+6}
Expand the expression.
\frac{\left(a-3\right)^{2}\left(2+b\right)}{\left(4-b^{2}\right)\left(3-a\right)}\times \frac{a^{2}}{3a-9}
Multiply \frac{\left(a-3\right)^{2}}{4-b^{2}} times \frac{2+b}{3-a} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-3\right)^{2}\left(2+b\right)a^{2}}{\left(4-b^{2}\right)\left(3-a\right)\left(3a-9\right)}
Multiply \frac{\left(a-3\right)^{2}\left(2+b\right)}{\left(4-b^{2}\right)\left(3-a\right)} times \frac{a^{2}}{3a-9} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(b+2\right)a^{2}\left(a-3\right)^{2}}{3\left(a-3\right)\left(b-2\right)\left(-b-2\right)\left(-a+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(-b-2\right)a^{2}\left(a-3\right)^{2}}{3\left(a-3\right)\left(b-2\right)\left(-b-2\right)\left(-a+3\right)}
Extract the negative sign in 2+b.
\frac{-\left(a-3\right)a^{2}}{3\left(b-2\right)\left(-a+3\right)}
Cancel out \left(a-3\right)\left(-b-2\right) in both numerator and denominator.
\frac{-a^{3}+3a^{2}}{-3ab+6a+9b-18}
Expand the expression.
\frac{\left(-a+3\right)a^{2}}{3\left(a-3\right)\left(-b+2\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-3\right)a^{2}}{3\left(a-3\right)\left(-b+2\right)}
Extract the negative sign in 3-a.
\frac{-a^{2}}{3\left(-b+2\right)}
Cancel out a-3 in both numerator and denominator.
\frac{-a^{2}}{-3b+6}
Expand the expression.