Evaluate
\frac{a^{2}}{3\left(b-2\right)}
Expand
-\frac{a^{2}}{3\left(2-b\right)}
Share
Copied to clipboard
\frac{\left(a-3\right)^{2}\left(2+b\right)}{\left(4-b^{2}\right)\left(3-a\right)}\times \frac{a^{2}}{3a-9}
Multiply \frac{\left(a-3\right)^{2}}{4-b^{2}} times \frac{2+b}{3-a} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-3\right)^{2}\left(2+b\right)a^{2}}{\left(4-b^{2}\right)\left(3-a\right)\left(3a-9\right)}
Multiply \frac{\left(a-3\right)^{2}\left(2+b\right)}{\left(4-b^{2}\right)\left(3-a\right)} times \frac{a^{2}}{3a-9} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(b+2\right)a^{2}\left(a-3\right)^{2}}{3\left(a-3\right)\left(b-2\right)\left(-b-2\right)\left(-a+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(-b-2\right)a^{2}\left(a-3\right)^{2}}{3\left(a-3\right)\left(b-2\right)\left(-b-2\right)\left(-a+3\right)}
Extract the negative sign in 2+b.
\frac{-\left(a-3\right)a^{2}}{3\left(b-2\right)\left(-a+3\right)}
Cancel out \left(a-3\right)\left(-b-2\right) in both numerator and denominator.
\frac{-a^{3}+3a^{2}}{-3ab+6a+9b-18}
Expand the expression.
\frac{\left(-a+3\right)a^{2}}{3\left(a-3\right)\left(-b+2\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-3\right)a^{2}}{3\left(a-3\right)\left(-b+2\right)}
Extract the negative sign in 3-a.
\frac{-a^{2}}{3\left(-b+2\right)}
Cancel out a-3 in both numerator and denominator.
\frac{-a^{2}}{-3b+6}
Expand the expression.
\frac{\left(a-3\right)^{2}\left(2+b\right)}{\left(4-b^{2}\right)\left(3-a\right)}\times \frac{a^{2}}{3a-9}
Multiply \frac{\left(a-3\right)^{2}}{4-b^{2}} times \frac{2+b}{3-a} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-3\right)^{2}\left(2+b\right)a^{2}}{\left(4-b^{2}\right)\left(3-a\right)\left(3a-9\right)}
Multiply \frac{\left(a-3\right)^{2}\left(2+b\right)}{\left(4-b^{2}\right)\left(3-a\right)} times \frac{a^{2}}{3a-9} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(b+2\right)a^{2}\left(a-3\right)^{2}}{3\left(a-3\right)\left(b-2\right)\left(-b-2\right)\left(-a+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(-b-2\right)a^{2}\left(a-3\right)^{2}}{3\left(a-3\right)\left(b-2\right)\left(-b-2\right)\left(-a+3\right)}
Extract the negative sign in 2+b.
\frac{-\left(a-3\right)a^{2}}{3\left(b-2\right)\left(-a+3\right)}
Cancel out \left(a-3\right)\left(-b-2\right) in both numerator and denominator.
\frac{-a^{3}+3a^{2}}{-3ab+6a+9b-18}
Expand the expression.
\frac{\left(-a+3\right)a^{2}}{3\left(a-3\right)\left(-b+2\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-3\right)a^{2}}{3\left(a-3\right)\left(-b+2\right)}
Extract the negative sign in 3-a.
\frac{-a^{2}}{3\left(-b+2\right)}
Cancel out a-3 in both numerator and denominator.
\frac{-a^{2}}{-3b+6}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}