Solve for p
p=-\frac{a^{2}+4}{2\left(a+1\right)}
a\neq -1\text{ and }a\neq 0
Solve for a
\left\{\begin{matrix}a=\sqrt{p^{2}-2p-4}-p\text{, }&p\geq \sqrt{5}+1\text{ or }p\leq 1-\sqrt{5}\\a=-\sqrt{p^{2}-2p-4}-p\text{, }&p\geq \sqrt{5}+1\text{ or }\left(p\neq -2\text{ and }p\leq 1-\sqrt{5}\right)\end{matrix}\right.
Share
Copied to clipboard
-\left(a-2\right)^{2}=2\left(a+1\right)p+4a
Multiply both sides of the equation by 4a, the least common multiple of -4a,2a.
-\left(a^{2}-4a+4\right)=2\left(a+1\right)p+4a
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2\right)^{2}.
-a^{2}+4a-4=2\left(a+1\right)p+4a
To find the opposite of a^{2}-4a+4, find the opposite of each term.
-a^{2}+4a-4=\left(2a+2\right)p+4a
Use the distributive property to multiply 2 by a+1.
-a^{2}+4a-4=2ap+2p+4a
Use the distributive property to multiply 2a+2 by p.
2ap+2p+4a=-a^{2}+4a-4
Swap sides so that all variable terms are on the left hand side.
2ap+2p=-a^{2}+4a-4-4a
Subtract 4a from both sides.
2ap+2p=-a^{2}-4
Combine 4a and -4a to get 0.
\left(2a+2\right)p=-a^{2}-4
Combine all terms containing p.
\frac{\left(2a+2\right)p}{2a+2}=\frac{-a^{2}-4}{2a+2}
Divide both sides by 2+2a.
p=\frac{-a^{2}-4}{2a+2}
Dividing by 2+2a undoes the multiplication by 2+2a.
p=-\frac{a^{2}+4}{2\left(a+1\right)}
Divide -a^{2}-4 by 2+2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}