Solve for a
a=4+\frac{6}{x}
x\neq 0
Solve for x
x=\frac{6}{a-4}
a\neq 4
Graph
Share
Copied to clipboard
\left(a-1\right)x-6=3x
Multiply both sides of the equation by 6, the least common multiple of 6,2.
ax-x-6=3x
Use the distributive property to multiply a-1 by x.
ax-6=3x+x
Add x to both sides.
ax-6=4x
Combine 3x and x to get 4x.
ax=4x+6
Add 6 to both sides.
xa=4x+6
The equation is in standard form.
\frac{xa}{x}=\frac{4x+6}{x}
Divide both sides by x.
a=\frac{4x+6}{x}
Dividing by x undoes the multiplication by x.
a=4+\frac{6}{x}
Divide 4x+6 by x.
\left(a-1\right)x-6=3x
Multiply both sides of the equation by 6, the least common multiple of 6,2.
ax-x-6=3x
Use the distributive property to multiply a-1 by x.
ax-x-6-3x=0
Subtract 3x from both sides.
ax-4x-6=0
Combine -x and -3x to get -4x.
ax-4x=6
Add 6 to both sides. Anything plus zero gives itself.
\left(a-4\right)x=6
Combine all terms containing x.
\frac{\left(a-4\right)x}{a-4}=\frac{6}{a-4}
Divide both sides by a-4.
x=\frac{6}{a-4}
Dividing by a-4 undoes the multiplication by a-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}