Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a-1\right)\left(a+1\right)}{a^{2}b^{2}}-\frac{\left(1+2a^{2}\right)b^{2}}{a^{2}b^{2}}+\frac{b^{2}+1}{a^{2}b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2}b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{1+2a^{2}}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\left(a-1\right)\left(a+1\right)-\left(1+2a^{2}\right)b^{2}}{a^{2}b^{2}}+\frac{b^{2}+1}{a^{2}b^{2}}
Since \frac{\left(a-1\right)\left(a+1\right)}{a^{2}b^{2}} and \frac{\left(1+2a^{2}\right)b^{2}}{a^{2}b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a-a-1-b^{2}-2a^{2}b^{2}}{a^{2}b^{2}}+\frac{b^{2}+1}{a^{2}b^{2}}
Do the multiplications in \left(a-1\right)\left(a+1\right)-\left(1+2a^{2}\right)b^{2}.
\frac{a^{2}-1-2a^{2}b^{2}-b^{2}}{a^{2}b^{2}}+\frac{b^{2}+1}{a^{2}b^{2}}
Combine like terms in a^{2}+a-a-1-b^{2}-2a^{2}b^{2}.
\frac{a^{2}-1-2a^{2}b^{2}-b^{2}+b^{2}+1}{a^{2}b^{2}}
Since \frac{a^{2}-1-2a^{2}b^{2}-b^{2}}{a^{2}b^{2}} and \frac{b^{2}+1}{a^{2}b^{2}} have the same denominator, add them by adding their numerators.
\frac{a^{2}-2a^{2}b^{2}}{a^{2}b^{2}}
Combine like terms in a^{2}-1-2a^{2}b^{2}-b^{2}+b^{2}+1.
\frac{a^{2}\left(-2b^{2}+1\right)}{a^{2}b^{2}}
Factor the expressions that are not already factored in \frac{a^{2}-2a^{2}b^{2}}{a^{2}b^{2}}.
\frac{-2b^{2}+1}{b^{2}}
Cancel out a^{2} in both numerator and denominator.
\frac{\left(a-1\right)\left(a+1\right)}{a^{2}b^{2}}-\frac{\left(1+2a^{2}\right)b^{2}}{a^{2}b^{2}}+\frac{b^{2}+1}{a^{2}b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2}b^{2} and a^{2} is a^{2}b^{2}. Multiply \frac{1+2a^{2}}{a^{2}} times \frac{b^{2}}{b^{2}}.
\frac{\left(a-1\right)\left(a+1\right)-\left(1+2a^{2}\right)b^{2}}{a^{2}b^{2}}+\frac{b^{2}+1}{a^{2}b^{2}}
Since \frac{\left(a-1\right)\left(a+1\right)}{a^{2}b^{2}} and \frac{\left(1+2a^{2}\right)b^{2}}{a^{2}b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+a-a-1-b^{2}-2a^{2}b^{2}}{a^{2}b^{2}}+\frac{b^{2}+1}{a^{2}b^{2}}
Do the multiplications in \left(a-1\right)\left(a+1\right)-\left(1+2a^{2}\right)b^{2}.
\frac{a^{2}-1-2a^{2}b^{2}-b^{2}}{a^{2}b^{2}}+\frac{b^{2}+1}{a^{2}b^{2}}
Combine like terms in a^{2}+a-a-1-b^{2}-2a^{2}b^{2}.
\frac{a^{2}-1-2a^{2}b^{2}-b^{2}+b^{2}+1}{a^{2}b^{2}}
Since \frac{a^{2}-1-2a^{2}b^{2}-b^{2}}{a^{2}b^{2}} and \frac{b^{2}+1}{a^{2}b^{2}} have the same denominator, add them by adding their numerators.
\frac{a^{2}-2a^{2}b^{2}}{a^{2}b^{2}}
Combine like terms in a^{2}-1-2a^{2}b^{2}-b^{2}+b^{2}+1.
\frac{a^{2}\left(-2b^{2}+1\right)}{a^{2}b^{2}}
Factor the expressions that are not already factored in \frac{a^{2}-2a^{2}b^{2}}{a^{2}b^{2}}.
\frac{-2b^{2}+1}{b^{2}}
Cancel out a^{2} in both numerator and denominator.