Evaluate
8a^{4}
Differentiate w.r.t. a
32a^{3}
Share
Copied to clipboard
\frac{a^{84}a^{8}\left(a^{9}\right)^{16}}{\left(a^{10}\right)^{8}\left(a^{9}\right)^{11}a^{53}}\times 8
To raise a power to another power, multiply the exponents. Multiply 6 and 14 to get 84.
\frac{a^{84}a^{8}a^{144}}{\left(a^{10}\right)^{8}\left(a^{9}\right)^{11}a^{53}}\times 8
To raise a power to another power, multiply the exponents. Multiply 9 and 16 to get 144.
\frac{a^{92}a^{144}}{\left(a^{10}\right)^{8}\left(a^{9}\right)^{11}a^{53}}\times 8
To multiply powers of the same base, add their exponents. Add 84 and 8 to get 92.
\frac{a^{236}}{\left(a^{10}\right)^{8}\left(a^{9}\right)^{11}a^{53}}\times 8
To multiply powers of the same base, add their exponents. Add 92 and 144 to get 236.
\frac{a^{236}}{a^{80}\left(a^{9}\right)^{11}a^{53}}\times 8
To raise a power to another power, multiply the exponents. Multiply 10 and 8 to get 80.
\frac{a^{236}}{a^{80}a^{99}a^{53}}\times 8
To raise a power to another power, multiply the exponents. Multiply 9 and 11 to get 99.
\frac{a^{236}}{a^{179}a^{53}}\times 8
To multiply powers of the same base, add their exponents. Add 80 and 99 to get 179.
\frac{a^{236}}{a^{232}}\times 8
To multiply powers of the same base, add their exponents. Add 179 and 53 to get 232.
a^{4}\times 8
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 232 from 236 to get 4.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{84}a^{8}\left(a^{9}\right)^{16}}{\left(a^{10}\right)^{8}\left(a^{9}\right)^{11}a^{53}}\times 8)
To raise a power to another power, multiply the exponents. Multiply 6 and 14 to get 84.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{84}a^{8}a^{144}}{\left(a^{10}\right)^{8}\left(a^{9}\right)^{11}a^{53}}\times 8)
To raise a power to another power, multiply the exponents. Multiply 9 and 16 to get 144.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{92}a^{144}}{\left(a^{10}\right)^{8}\left(a^{9}\right)^{11}a^{53}}\times 8)
To multiply powers of the same base, add their exponents. Add 84 and 8 to get 92.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{236}}{\left(a^{10}\right)^{8}\left(a^{9}\right)^{11}a^{53}}\times 8)
To multiply powers of the same base, add their exponents. Add 92 and 144 to get 236.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{236}}{a^{80}\left(a^{9}\right)^{11}a^{53}}\times 8)
To raise a power to another power, multiply the exponents. Multiply 10 and 8 to get 80.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{236}}{a^{80}a^{99}a^{53}}\times 8)
To raise a power to another power, multiply the exponents. Multiply 9 and 11 to get 99.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{236}}{a^{179}a^{53}}\times 8)
To multiply powers of the same base, add their exponents. Add 80 and 99 to get 179.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{236}}{a^{232}}\times 8)
To multiply powers of the same base, add their exponents. Add 179 and 53 to get 232.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}\times 8)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 232 from 236 to get 4.
4\times 8a^{4-1}
The derivative of ax^{n} is nax^{n-1}.
32a^{4-1}
Multiply 4 times 8.
32a^{3}
Subtract 1 from 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}