Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{5}\right)^{-5}\left(b^{-3}\right)^{-5}}{\left(6a^{2}b^{-1}\right)^{-2}}
Expand \left(a^{5}b^{-3}\right)^{-5}.
\frac{a^{-25}\left(b^{-3}\right)^{-5}}{\left(6a^{2}b^{-1}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 5 and -5 to get -25.
\frac{a^{-25}b^{15}}{\left(6a^{2}b^{-1}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -5 to get 15.
\frac{a^{-25}b^{15}}{6^{-2}\left(a^{2}\right)^{-2}\left(b^{-1}\right)^{-2}}
Expand \left(6a^{2}b^{-1}\right)^{-2}.
\frac{a^{-25}b^{15}}{6^{-2}a^{-4}\left(b^{-1}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{a^{-25}b^{15}}{6^{-2}a^{-4}b^{2}}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
\frac{a^{-25}b^{15}}{\frac{1}{36}a^{-4}b^{2}}
Calculate 6 to the power of -2 and get \frac{1}{36}.
\frac{a^{-25}b^{13}}{\frac{1}{36}a^{-4}}
Cancel out b^{2} in both numerator and denominator.
\frac{b^{13}}{\frac{1}{36}a^{21}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(a^{5}\right)^{-5}\left(b^{-3}\right)^{-5}}{\left(6a^{2}b^{-1}\right)^{-2}}
Expand \left(a^{5}b^{-3}\right)^{-5}.
\frac{a^{-25}\left(b^{-3}\right)^{-5}}{\left(6a^{2}b^{-1}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 5 and -5 to get -25.
\frac{a^{-25}b^{15}}{\left(6a^{2}b^{-1}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -3 and -5 to get 15.
\frac{a^{-25}b^{15}}{6^{-2}\left(a^{2}\right)^{-2}\left(b^{-1}\right)^{-2}}
Expand \left(6a^{2}b^{-1}\right)^{-2}.
\frac{a^{-25}b^{15}}{6^{-2}a^{-4}\left(b^{-1}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{a^{-25}b^{15}}{6^{-2}a^{-4}b^{2}}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
\frac{a^{-25}b^{15}}{\frac{1}{36}a^{-4}b^{2}}
Calculate 6 to the power of -2 and get \frac{1}{36}.
\frac{a^{-25}b^{13}}{\frac{1}{36}a^{-4}}
Cancel out b^{2} in both numerator and denominator.
\frac{b^{13}}{\frac{1}{36}a^{21}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.