Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(a^{3}b^{4}\right)^{3}\times \frac{1}{a^{3}b^{8}}
Use the rules of exponents to simplify the expression.
\left(a^{3}\right)^{3}\left(b^{4}\right)^{3}\times \frac{1}{a^{3}}\times \frac{1}{b^{8}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(a^{3}\right)^{3}\times \frac{1}{a^{3}}\left(b^{4}\right)^{3}\times \frac{1}{b^{8}}
Use the Commutative Property of Multiplication.
a^{3\times 3}a^{3\left(-1\right)}b^{4\times 3}b^{8\left(-1\right)}
To raise a power to another power, multiply the exponents.
a^{9}a^{3\left(-1\right)}b^{4\times 3}b^{8\left(-1\right)}
Multiply 3 times 3.
a^{9}a^{-3}b^{4\times 3}b^{8\left(-1\right)}
Multiply 3 times -1.
a^{9}a^{-3}b^{12}b^{8\left(-1\right)}
Multiply 4 times 3.
a^{9}a^{-3}b^{12}b^{-8}
Multiply 8 times -1.
a^{9-3}b^{12-8}
To multiply powers of the same base, add their exponents.
a^{6}b^{12-8}
Add the exponents 9 and -3.
a^{6}b^{4}
Add the exponents 12 and -8.
\left(a^{3}b^{4}\right)^{3}\times \frac{1}{a^{3}b^{8}}
Use the rules of exponents to simplify the expression.
\left(a^{3}\right)^{3}\left(b^{4}\right)^{3}\times \frac{1}{a^{3}}\times \frac{1}{b^{8}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(a^{3}\right)^{3}\times \frac{1}{a^{3}}\left(b^{4}\right)^{3}\times \frac{1}{b^{8}}
Use the Commutative Property of Multiplication.
a^{3\times 3}a^{3\left(-1\right)}b^{4\times 3}b^{8\left(-1\right)}
To raise a power to another power, multiply the exponents.
a^{9}a^{3\left(-1\right)}b^{4\times 3}b^{8\left(-1\right)}
Multiply 3 times 3.
a^{9}a^{-3}b^{4\times 3}b^{8\left(-1\right)}
Multiply 3 times -1.
a^{9}a^{-3}b^{12}b^{8\left(-1\right)}
Multiply 4 times 3.
a^{9}a^{-3}b^{12}b^{-8}
Multiply 8 times -1.
a^{9-3}b^{12-8}
To multiply powers of the same base, add their exponents.
a^{6}b^{12-8}
Add the exponents 9 and -3.
a^{6}b^{4}
Add the exponents 12 and -8.