Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a-b\right)^{-5}}{\left(a-b\right)^{-4}\left(a+b\right)}
Cancel out \left(a+b\right)^{2} in both numerator and denominator.
\frac{1}{\left(a+b\right)\left(a-b\right)^{1}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{\left(a+b\right)\left(a-b\right)}
Calculate a-b to the power of 1 and get a-b.
\frac{1}{a^{2}-b^{2}}
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(a-b\right)^{-5}}{\left(a-b\right)^{-4}\left(a+b\right)}
Cancel out \left(a+b\right)^{2} in both numerator and denominator.
\frac{1}{\left(a+b\right)\left(a-b\right)^{1}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{\left(a+b\right)\left(a-b\right)}
Calculate a-b to the power of 1 and get a-b.
\frac{1}{a^{2}-b^{2}}
Consider \left(a+b\right)\left(a-b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.