Solve for x
\left\{\begin{matrix}x=12\text{, }&a\neq -2\\x\neq 0\text{, }&a=-3\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-3\text{, }&x\neq 0\\a\neq -2\text{, }&x=12\end{matrix}\right.
Graph
Share
Copied to clipboard
x\left(a+2\right)\left(a+3\right)=\left(3a+6\right)\times 4\left(a+3\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(a+2\right), the least common multiple of 3\left(a+2\right),x.
\left(xa+2x\right)\left(a+3\right)=\left(3a+6\right)\times 4\left(a+3\right)
Use the distributive property to multiply x by a+2.
xa^{2}+5xa+6x=\left(3a+6\right)\times 4\left(a+3\right)
Use the distributive property to multiply xa+2x by a+3 and combine like terms.
xa^{2}+5xa+6x=\left(12a+24\right)\left(a+3\right)
Use the distributive property to multiply 3a+6 by 4.
xa^{2}+5xa+6x=12a^{2}+60a+72
Use the distributive property to multiply 12a+24 by a+3 and combine like terms.
\left(a^{2}+5a+6\right)x=12a^{2}+60a+72
Combine all terms containing x.
\frac{\left(a^{2}+5a+6\right)x}{a^{2}+5a+6}=\frac{12\left(a+2\right)\left(a+3\right)}{a^{2}+5a+6}
Divide both sides by a^{2}+5a+6.
x=\frac{12\left(a+2\right)\left(a+3\right)}{a^{2}+5a+6}
Dividing by a^{2}+5a+6 undoes the multiplication by a^{2}+5a+6.
x=12
Divide 12\left(2+a\right)\left(3+a\right) by a^{2}+5a+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}