Skip to main content
Solve for B
Tick mark Image
Solve for E
Tick mark Image

Similar Problems from Web Search

Share

\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{20}{100}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Multiply both sides of the equation by 600.
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{1}{5}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{6}{7}\left(EBIT-40\right)\times \frac{4}{5}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Subtract \frac{1}{5} from 1 to get \frac{4}{5}.
\frac{24}{35}\left(EBIT-40\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Multiply \frac{6}{7} and \frac{4}{5} to get \frac{24}{35}.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Use the distributive property to multiply \frac{24}{35} by EBIT-40.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{20}{100}\right)
Subtract 48 from -40 to get -88.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{1}{5}\right)
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\times \frac{4}{5}
Subtract \frac{1}{5} from 1 to get \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}=\frac{4}{5}EBIT-\frac{352}{5}
Use the distributive property to multiply EBIT-88 by \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}-\frac{4}{5}EBIT=-\frac{352}{5}
Subtract \frac{4}{5}EBIT from both sides.
-\frac{4}{35}EBIT-\frac{192}{7}=-\frac{352}{5}
Combine \frac{24}{35}EBIT and -\frac{4}{5}EBIT to get -\frac{4}{35}EBIT.
-\frac{4}{35}EBIT=-\frac{352}{5}+\frac{192}{7}
Add \frac{192}{7} to both sides.
-\frac{4}{35}EBIT=-\frac{1504}{35}
Add -\frac{352}{5} and \frac{192}{7} to get -\frac{1504}{35}.
\left(-\frac{4EIT}{35}\right)B=-\frac{1504}{35}
The equation is in standard form.
\frac{\left(-\frac{4EIT}{35}\right)B}{-\frac{4EIT}{35}}=-\frac{\frac{1504}{35}}{-\frac{4EIT}{35}}
Divide both sides by -\frac{4}{35}EIT.
B=-\frac{\frac{1504}{35}}{-\frac{4EIT}{35}}
Dividing by -\frac{4}{35}EIT undoes the multiplication by -\frac{4}{35}EIT.
B=\frac{376}{EIT}
Divide -\frac{1504}{35} by -\frac{4}{35}EIT.
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{20}{100}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Multiply both sides of the equation by 600.
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{1}{5}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{6}{7}\left(EBIT-40\right)\times \frac{4}{5}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Subtract \frac{1}{5} from 1 to get \frac{4}{5}.
\frac{24}{35}\left(EBIT-40\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Multiply \frac{6}{7} and \frac{4}{5} to get \frac{24}{35}.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Use the distributive property to multiply \frac{24}{35} by EBIT-40.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{20}{100}\right)
Subtract 48 from -40 to get -88.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{1}{5}\right)
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\times \frac{4}{5}
Subtract \frac{1}{5} from 1 to get \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}=\frac{4}{5}EBIT-\frac{352}{5}
Use the distributive property to multiply EBIT-88 by \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}-\frac{4}{5}EBIT=-\frac{352}{5}
Subtract \frac{4}{5}EBIT from both sides.
-\frac{4}{35}EBIT-\frac{192}{7}=-\frac{352}{5}
Combine \frac{24}{35}EBIT and -\frac{4}{5}EBIT to get -\frac{4}{35}EBIT.
-\frac{4}{35}EBIT=-\frac{352}{5}+\frac{192}{7}
Add \frac{192}{7} to both sides.
-\frac{4}{35}EBIT=-\frac{1504}{35}
Add -\frac{352}{5} and \frac{192}{7} to get -\frac{1504}{35}.
\left(-\frac{4BIT}{35}\right)E=-\frac{1504}{35}
The equation is in standard form.
\frac{\left(-\frac{4BIT}{35}\right)E}{-\frac{4BIT}{35}}=-\frac{\frac{1504}{35}}{-\frac{4BIT}{35}}
Divide both sides by -\frac{4}{35}BIT.
E=-\frac{\frac{1504}{35}}{-\frac{4BIT}{35}}
Dividing by -\frac{4}{35}BIT undoes the multiplication by -\frac{4}{35}BIT.
E=\frac{376}{BIT}
Divide -\frac{1504}{35} by -\frac{4}{35}BIT.