\frac { ( E B I T - 40 ) \times ( 1 - 20 \% ) } { 600 + 100 } = \frac { ( E B I T - 40 - 48 ) \times ( 1 - 20 \% ) } { 600 }
Solve for B
B=\frac{376}{EIT}
T\neq 0\text{ and }I\neq 0\text{ and }E\neq 0
Solve for E
E=\frac{376}{BIT}
T\neq 0\text{ and }I\neq 0\text{ and }B\neq 0
Share
Copied to clipboard
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{20}{100}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Multiply both sides of the equation by 600.
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{1}{5}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{6}{7}\left(EBIT-40\right)\times \frac{4}{5}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Subtract \frac{1}{5} from 1 to get \frac{4}{5}.
\frac{24}{35}\left(EBIT-40\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Multiply \frac{6}{7} and \frac{4}{5} to get \frac{24}{35}.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Use the distributive property to multiply \frac{24}{35} by EBIT-40.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{20}{100}\right)
Subtract 48 from -40 to get -88.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{1}{5}\right)
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\times \frac{4}{5}
Subtract \frac{1}{5} from 1 to get \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}=\frac{4}{5}EBIT-\frac{352}{5}
Use the distributive property to multiply EBIT-88 by \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}-\frac{4}{5}EBIT=-\frac{352}{5}
Subtract \frac{4}{5}EBIT from both sides.
-\frac{4}{35}EBIT-\frac{192}{7}=-\frac{352}{5}
Combine \frac{24}{35}EBIT and -\frac{4}{5}EBIT to get -\frac{4}{35}EBIT.
-\frac{4}{35}EBIT=-\frac{352}{5}+\frac{192}{7}
Add \frac{192}{7} to both sides.
-\frac{4}{35}EBIT=-\frac{1504}{35}
Add -\frac{352}{5} and \frac{192}{7} to get -\frac{1504}{35}.
\left(-\frac{4EIT}{35}\right)B=-\frac{1504}{35}
The equation is in standard form.
\frac{\left(-\frac{4EIT}{35}\right)B}{-\frac{4EIT}{35}}=-\frac{\frac{1504}{35}}{-\frac{4EIT}{35}}
Divide both sides by -\frac{4}{35}EIT.
B=-\frac{\frac{1504}{35}}{-\frac{4EIT}{35}}
Dividing by -\frac{4}{35}EIT undoes the multiplication by -\frac{4}{35}EIT.
B=\frac{376}{EIT}
Divide -\frac{1504}{35} by -\frac{4}{35}EIT.
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{20}{100}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Multiply both sides of the equation by 600.
\frac{6}{7}\left(EBIT-40\right)\left(1-\frac{1}{5}\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{6}{7}\left(EBIT-40\right)\times \frac{4}{5}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Subtract \frac{1}{5} from 1 to get \frac{4}{5}.
\frac{24}{35}\left(EBIT-40\right)=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Multiply \frac{6}{7} and \frac{4}{5} to get \frac{24}{35}.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-40-48\right)\left(1-\frac{20}{100}\right)
Use the distributive property to multiply \frac{24}{35} by EBIT-40.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{20}{100}\right)
Subtract 48 from -40 to get -88.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\left(1-\frac{1}{5}\right)
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{24}{35}EBIT-\frac{192}{7}=\left(EBIT-88\right)\times \frac{4}{5}
Subtract \frac{1}{5} from 1 to get \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}=\frac{4}{5}EBIT-\frac{352}{5}
Use the distributive property to multiply EBIT-88 by \frac{4}{5}.
\frac{24}{35}EBIT-\frac{192}{7}-\frac{4}{5}EBIT=-\frac{352}{5}
Subtract \frac{4}{5}EBIT from both sides.
-\frac{4}{35}EBIT-\frac{192}{7}=-\frac{352}{5}
Combine \frac{24}{35}EBIT and -\frac{4}{5}EBIT to get -\frac{4}{35}EBIT.
-\frac{4}{35}EBIT=-\frac{352}{5}+\frac{192}{7}
Add \frac{192}{7} to both sides.
-\frac{4}{35}EBIT=-\frac{1504}{35}
Add -\frac{352}{5} and \frac{192}{7} to get -\frac{1504}{35}.
\left(-\frac{4BIT}{35}\right)E=-\frac{1504}{35}
The equation is in standard form.
\frac{\left(-\frac{4BIT}{35}\right)E}{-\frac{4BIT}{35}}=-\frac{\frac{1504}{35}}{-\frac{4BIT}{35}}
Divide both sides by -\frac{4}{35}BIT.
E=-\frac{\frac{1504}{35}}{-\frac{4BIT}{35}}
Dividing by -\frac{4}{35}BIT undoes the multiplication by -\frac{4}{35}BIT.
E=\frac{376}{BIT}
Divide -\frac{1504}{35} by -\frac{4}{35}BIT.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}