Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(9x^{-2}\times 1z^{2}\right)^{-2}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Calculate y to the power of 0 and get 1.
\frac{\left(9x^{-2}z^{2}\right)^{-2}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Multiply 9 and 1 to get 9.
\frac{9^{-2}\left(x^{-2}\right)^{-2}\left(z^{2}\right)^{-2}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Expand \left(9x^{-2}z^{2}\right)^{-2}.
\frac{9^{-2}x^{4}\left(z^{2}\right)^{-2}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{9^{-2}x^{4}z^{-4}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{81}x^{4}z^{-4}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Calculate 9 to the power of -2 and get \frac{1}{81}.
\frac{\frac{1}{81}x^{4}z^{-4}\left(x^{2}\right)^{2}\left(z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Expand \left(x^{2}z^{-2}\right)^{2}.
\frac{\frac{1}{81}x^{4}z^{-4}x^{4}\left(z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{81}x^{4}z^{-4}x^{4}z^{-4}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{\frac{1}{81}x^{8}z^{-4}z^{-4}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
\frac{\frac{1}{81}x^{8}z^{-8}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To multiply powers of the same base, add their exponents. Add -4 and -4 to get -8.
\frac{\frac{1}{81}x^{8}z^{-8}}{3^{4}\left(x^{3}\right)^{4}\left(y^{-3}\right)^{4}\left(z^{-1}\right)^{4}}
Expand \left(3x^{3}y^{-3}z^{-1}\right)^{4}.
\frac{\frac{1}{81}x^{8}z^{-8}}{3^{4}x^{12}\left(y^{-3}\right)^{4}\left(z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{\frac{1}{81}x^{8}z^{-8}}{3^{4}x^{12}y^{-12}\left(z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply -3 and 4 to get -12.
\frac{\frac{1}{81}x^{8}z^{-8}}{3^{4}x^{12}y^{-12}z^{-4}}
To raise a power to another power, multiply the exponents. Multiply -1 and 4 to get -4.
\frac{\frac{1}{81}x^{8}z^{-8}}{81x^{12}y^{-12}z^{-4}}
Calculate 3 to the power of 4 and get 81.
\frac{\frac{1}{81}z^{-8}}{81y^{-12}z^{-4}x^{4}}
Cancel out x^{8} in both numerator and denominator.
\frac{\frac{1}{81}}{81y^{-12}x^{4}z^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{81\times 81y^{-12}x^{4}z^{4}}
Express \frac{\frac{1}{81}}{81y^{-12}x^{4}z^{4}} as a single fraction.
\frac{1}{6561y^{-12}x^{4}z^{4}}
Multiply 81 and 81 to get 6561.
\frac{\left(9x^{-2}\times 1z^{2}\right)^{-2}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Calculate y to the power of 0 and get 1.
\frac{\left(9x^{-2}z^{2}\right)^{-2}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Multiply 9 and 1 to get 9.
\frac{9^{-2}\left(x^{-2}\right)^{-2}\left(z^{2}\right)^{-2}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Expand \left(9x^{-2}z^{2}\right)^{-2}.
\frac{9^{-2}x^{4}\left(z^{2}\right)^{-2}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply -2 and -2 to get 4.
\frac{9^{-2}x^{4}z^{-4}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{81}x^{4}z^{-4}\left(x^{2}z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Calculate 9 to the power of -2 and get \frac{1}{81}.
\frac{\frac{1}{81}x^{4}z^{-4}\left(x^{2}\right)^{2}\left(z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
Expand \left(x^{2}z^{-2}\right)^{2}.
\frac{\frac{1}{81}x^{4}z^{-4}x^{4}\left(z^{-2}\right)^{2}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{81}x^{4}z^{-4}x^{4}z^{-4}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply -2 and 2 to get -4.
\frac{\frac{1}{81}x^{8}z^{-4}z^{-4}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
\frac{\frac{1}{81}x^{8}z^{-8}}{\left(3x^{3}y^{-3}z^{-1}\right)^{4}}
To multiply powers of the same base, add their exponents. Add -4 and -4 to get -8.
\frac{\frac{1}{81}x^{8}z^{-8}}{3^{4}\left(x^{3}\right)^{4}\left(y^{-3}\right)^{4}\left(z^{-1}\right)^{4}}
Expand \left(3x^{3}y^{-3}z^{-1}\right)^{4}.
\frac{\frac{1}{81}x^{8}z^{-8}}{3^{4}x^{12}\left(y^{-3}\right)^{4}\left(z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{\frac{1}{81}x^{8}z^{-8}}{3^{4}x^{12}y^{-12}\left(z^{-1}\right)^{4}}
To raise a power to another power, multiply the exponents. Multiply -3 and 4 to get -12.
\frac{\frac{1}{81}x^{8}z^{-8}}{3^{4}x^{12}y^{-12}z^{-4}}
To raise a power to another power, multiply the exponents. Multiply -1 and 4 to get -4.
\frac{\frac{1}{81}x^{8}z^{-8}}{81x^{12}y^{-12}z^{-4}}
Calculate 3 to the power of 4 and get 81.
\frac{\frac{1}{81}z^{-8}}{81y^{-12}z^{-4}x^{4}}
Cancel out x^{8} in both numerator and denominator.
\frac{\frac{1}{81}}{81y^{-12}x^{4}z^{4}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{81\times 81y^{-12}x^{4}z^{4}}
Express \frac{\frac{1}{81}}{81y^{-12}x^{4}z^{4}} as a single fraction.
\frac{1}{6561y^{-12}x^{4}z^{4}}
Multiply 81 and 81 to get 6561.